Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Novel short-chain-length-long-chain-length polyhydroxyalkanoate (SCL-LCL-PHA) copolymer production was examined with Pseudomonas aeruginosa MTCC 7925 under supplementation of non-edible oils such as karanja, jatropha, mahua, and castor oils, and their respective cakes for cost reduction. Polymer yield reached up to 4.66 g/l (63.7% dry cell wt., dcw) with a mol fraction of 89.7:4.2:2.7:3.4 of 3- hydroxybutyric acid (3HB): 3-hydroxyvaleric acid (3HV): 3-hydroxyhexadecanoic acid (3HHD): 3-hydroxyoctadecanoic acid (3HOD) units under the interactive condition of low nitrogen concentration with 0.5% (v/v) jatropha oil in combination with its cake extract, followed by 3.94 g/l (59.6% dcw) with a mol fraction of 91.6:3.3:2.5:2.6 of 3HB: 3HV: 3HHD: 3HOD with castor oil and its cake extracts. The novel co-polymer not only depicted material properties analogous to the common plastics but also better melting temperature (T), glass-transition temperature (T), elongation-to-break value and Young’s modulus than the homopolymer of poly-3-hydroxybutyrate (PHB). As compared to our previous report where palm oil and its cakes were used, a cost reduction of 54% was observed with the non-edible jatropha oil with its cakes. This opens up possibility for further study at pilot-scale level for low-cost production and future recommendations.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/2211550104666150414194835
2015-02-01
2025-07-03
Loading full text...

Full text loading...

/content/journals/cbiot/10.2174/2211550104666150414194835
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test