Skip to content
2000
Volume 19, Issue 6
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background: Identifying differentially methylated region (DMR) is a basic but important task in epigenomics, which can help investigate the mechanisms of diseases and provide methylation biomarkers for screening diseases. A set of methods have been proposed to identify DMRs from methylation array data. However, it lacks effective metrics to characterize different DMR sets and enable a straight way for comparison. Methods: In this study, we introduce a metric, , to characterize DMR sets detected by different methods from methylation array data. To calculate , firstly, the methylation differences of DMRs are recalculated by incorporating the correlations between probes and their represented CpGs. Then, is calculated based on the number of probes and the dense of CpGs in DMRs with methylation differences falling in each interval. Result & Discussion: By comparing the of DMR sets predicted by seven methods on four scenario, the results demonstrate that can make an efficient guidance for selecting DMR sets, and provide new insights in cancer genomics studies by comparing the DMR sets from the related pathological states. For example, there are many regions with subtle methylation alteration in subtypes of prostate cancer are altered oppositely in the benign state, which may indicate a possible revision mechanism in benign prostate cancer. Conclusion: Futhermore, when applied to datasets that underwent different runs of batch effect removal, the DMRn can help to visualize the bias introduced by multi-runs of batch effect removal. The tool for calculating DMRn is available in the GitHub repository(https://github.com/xqpeng/DMRArrayMetric).

Loading

Article metrics loading...

/content/journals/cbio/10.2174/1574893618666230816141723
2024-07-01
2025-06-17
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/1574893618666230816141723
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test