Skip to content
2000
Volume 15, Issue 1
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background: Identifying Drug-Target Interactions (DTIs) is a major challenge for current drug discovery and drug repositioning. Compared to traditional experimental approaches, in silico methods are fast and inexpensive. With the increase in open-access experimental data, numerous computational methods have been applied to predict DTIs. Methods: In this study, we propose an end-to-end learning model of Factorization Machine and Deep Neural Network (FM-DNN), which emphasizes both low-order (first or second order) and high-order (higher than second order) feature interactions without any feature engineering other than raw features. This approach combines the power of FM and DNN learning for feature learning in a new neural network architecture. Results: The experimental DTI basic features include drug characteristics (609), target characteristics (1819), plus drug ID, target ID, total 2430. We compare 8 models such as SVM, GBDT, WIDE-DEEP etc, the FM-DNN algorithm model obtains the best results of AUC(0.8866) and AUPR(0.8281). Conclusion: Feature engineering is a job that requires expert knowledge, it is often difficult and time-consuming to achieve good results. FM-DNN can auto learn a lower-order expression by FM and a high-order expression by DNN.FM-DNN model has outstanding advantages over other commonly used models.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/1574893614666190227160538
2020-01-01
2024-11-20
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/1574893614666190227160538
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test