Skip to content
2000
Volume 14, Issue 5
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background: Mining knowledge from microarray data is one of the popular research topics in biomedical informatics. Gene selection is a significant research trend in biomedical data mining, since the accuracy of tumor identification heavily relies on the genes biologically relevant to the identified problems. Objective: In order to select a small subset of informative genes from numerous genes for tumor identification, various computational intelligence methods were presented. However, due to the high data dimensions, small sample size, and the inherent noise available, many computational methods confront challenges in selecting small gene subset. Methods: In our study, we propose a novel algorithm PSONRS_KNN for gene selection based on the particle swarm optimization (PSO) algorithm along with the neighborhood rough set (NRS) reduction model and the K-nearest neighborhood (KNN) classifier. Results: First, the top-ranked candidate genes are obtained by the GainRatioAttributeEval preselection algorithm in WEKA. Then, the minimum possible meaningful set of genes is selected by combining PSO with NRS and KNN classifier. Conclusion: Experimental results on five microarray gene expression datasets demonstrate that the performance of the proposed method is better than existing state-of-the-art methods in terms of classification accuracy and the number of selected genes.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/1574893614666190204150918
2019-07-01
2025-05-22
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/1574893614666190204150918
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test