Skip to content
2000
image of Predicting Distant Metastatic Sites in Cancer Using miRNA and mRNA Expression Data

Abstract

Background

Cancer patients with metastasis face a much lower survival rate and a higher risk of recurrence than those without metastasis. So far, several learning methods have been proposed to predict cancer metastasis, but most of these methods are intended to predict lymph node metastasis rather than distant metastasis. Distant metastasis is more difficult to predict than lymph node metastasis because distant metastasis is detected after a comprehensive examination of the entire body, and there are not enough publicly available tumor samples with distant metastasis that can be used for training and learning methods. Predicting distant metastatic sites is even more challenging than predicting whether distant metastasis will occur or not.

Methods

The problem of predicting distant metastatic sites is a multi‐class and multi‐label classification problem; there are more than two classes for distant metastatic sites (bone, brain, liver, lung, and other organs), and a single sample can have multiple labels for multiple metastatic sites. We transformed the multi‐label and multi‐class problem into multiple single‐label binary issues. For each metastatic site, we built a random forest model that deals with binary classification and linked the models along a chain.

Results

Testing the model on miRNA and mRNA expression datasets of several cancer types showed a high performance in all performance measures. In the comparison of our model with other methods, our method outperformed the others.

Conclusion

We developed a new method for predicting multiple metastatic sites using miRNA and mRNA expression data. The technique will be useful in predicting distant metastatic sites before distant metastasis occurs, which in turn will help clinicians determine treatment options for cancer patients.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936338628241104110200
2024-12-04
2025-01-31
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Weiderpass E. Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021 127 16 3029 3030 10.1002/cncr.33587 34086348
    [Google Scholar]
  2. Cancer. Available from: https://www.who.int/health-topics/cancer#tab=tab_1
  3. Guan X. Cancer metastases: Challenges and opportunities. Acta Pharm. Sin. B 2015 5 5 402 418 10.1016/j.apsb.2015.07.005 26579471
    [Google Scholar]
  4. Ganesh K. Massaguac J. Targeting metastatic cancer. Nat. Med. 2021 27 1 34 44 10.1038/s41591‑020‑01195‑4 33442008
    [Google Scholar]
  5. Edge S.B. Compton C.C. The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 17 1471 1474 2010 10.1245/s10434‑010‑0985‑4 20180029
    [Google Scholar]
  6. Hamaoka T. Madewell J.E. Podoloff D.A. Hortobagyi G.N. Ueno N.T. Bone imaging in metastatic breast cancer. J. Clin. Oncol. 2004 22 14 2942 2953 10.1200/JCO.2004.08.181 15254062
    [Google Scholar]
  7. Riggio A.I. Varley K.E. Welm A.L. The lingering mysteries of metastatic recurrence in breast cancer. Br. J. Cancer 2021 124 1 13 26 10.1038/s41416‑020‑01161‑4 33239679
    [Google Scholar]
  8. Lambert A.W. Pattabiraman D.R. Weinberg R.A. Emerging biological principles of metastasis. Cell 2017 168 4 670 691 10.1016/j.cell.2016.11.037 28187288
    [Google Scholar]
  9. Robinson D.R. Wu Y.M. Lonigro R.J. Vats P. Cobain E. Everett J. Cao X. Rabban E. Kumar Sinha C. Raymond V. Schuetze S. Alva A. Siddiqui J. Chugh R. Worden F. Zalupski M.M. Innis J. Mody R.J. Tomlins S.A. Lucas D. Baker L.H. Ramnath N. Schott A.F. Hayes D.F. Vijai J. Offit K. Stoffel E.M. Roberts J.S. Smith D.C. Kunju L.P. Talpaz M. Cieslik M. Chinnaiyan A.M. Integrative clinical genomics of metastatic cancer. Nature 2017 548 7667 297 303 10.1038/nature23306 28783718
    [Google Scholar]
  10. Metri R. Mohan A. Nsengimana J. Pozniak J. Molina Paris C. Newton-Bishop J. Bishop D. Chandra N. Identification of a gene signature for discriminating metastatic from primary melanoma using a molecular interaction network approach. Sci. Rep. 2017 7 1 17314 10.1038/s41598‑017‑17330‑0 29229936
    [Google Scholar]
  11. Zhao S. Yu J. Wang L. Machine learning based prediction of brain metastasis of patients with IIIA-N2 lung adenocarcinoma by a three-miRNA signature. Transl. Oncol. 2018 11 1 157 167 10.1016/j.tranon.2017.12.002 29288987
    [Google Scholar]
  12. Zhang S. Zhang C. Du J. Zhang R. Yang S. Li B. Wang P. Deng W. Prediction of lymph node metastasis in cancers using differentially expressed mRNA and non coding RNA signatures. Front. Cell Dev. Biol. 2021 9 605977 10.3389/fcell.2021.605977 33644044
    [Google Scholar]
  13. Albaradei S. Albaradei A. Alsaedi A. Uludag M. Thafar M.A. Gojobori T. Essack M. Gao X. MetastaSite: Predicting metastasis to different sites using deep learning with gene expression data. Front. Mol. Biosci. 2022 9 913602 10.3389/fmolb.2022.913602 35936793
    [Google Scholar]
  14. Jha A. Khan Y. Sahay R. d Aquin M. Metastatic site prediction in breast cancer using omics knowledge graph and pattern mining with kirchhoff's law traversal. bioRxiv 10.1101/2020.07.14.203208
    [Google Scholar]
  15. Weinstein J.N. Collisson E.A. Mills G.B. Shaw K.R.M. Ozenberger B.A. Ellrott K. Shmulevich I. Sander C. Stuart J.M. The cancer genome atlas pan cancer analysis project. Nat. Genet. 2013 45 10 1113 1120 10.1038/ng.2764 24071849
    [Google Scholar]
  16. Colaprico A. Silva T.C. Olsen C. Garofano L. Cava C. Garolini D. Sabedot T.S. Malta T.M. Pagnotta S.M. Castiglioni I. Ceccarelli M. Bontempi G. Noushmehr H. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016 44 8 e71 10.1093/nar/gkv1507 26704973
    [Google Scholar]
  17. Mounir M. Lucchetta M. Silva T.C. Olsen C. Bontempi G. Chen X. Noushmehr H. Colaprico A. Papaleo E. New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx. PLOS Comput. Biol. 2019 15 3 e1006701 10.1371/journal.pcbi.1006701 30835723
    [Google Scholar]
  18. Robinson M.D. Oshlack A. A scaling normalization method for differential expression analysis of RNA seq data. Genome Biol. 2010 11 3 R25 10.1186/gb‑2010‑11‑3‑r25 20196867
    [Google Scholar]
  19. Chawla N.V. Bowyer K.W. Hall L.O. Kegelmeyer W.P. SMOTE: synthetic minority over sampling technique. J. Artif. Intell. Res. 2002 16 321 357 10.1613/jair.953
    [Google Scholar]
  20. Wilson D.L. 1972 Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man. Cybern. SMC-2 3 408 421 10.1109/TSMC.1972.4309137
    [Google Scholar]
  21. Yilmaz M. Christofori G. Lehembre F. Distinct mechanisms of tumor invasion and metastasis. Trends Mol. Med. 2007 13 12 535 541 10.1016/j.molmed.2007.10.004 17981506
    [Google Scholar]
  22. Tibshirani R Regression shrinkage and selection via the lasso. J. R. Stat. Soc., B. 1996 58 1 267 288 10.1111/j.2517‑6161.1996.tb02080.x
    [Google Scholar]
  23. Mackiewicz A. Ratajczak W. Principal components analysis (PCA). Comput. Geosci. 1993 19 3 303 342 10.1016/0098‑3004(93)90090‑R
    [Google Scholar]
  24. Chicco D. Jurman G. The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification. BioData Min. 2023 16 1 4 10.1186/s13040‑023‑00322‑4 36800973
    [Google Scholar]
  25. Chicco D. Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 2020 21 1 6 10.1186/s12864‑019‑6413‑7 31898477
    [Google Scholar]
  26. Chuah J. Kruger U. Wang G. Yan P. Hahn J. Framework for testing robustness of machine learning based classifiers. J. Pers. Med. 2022 12 8 1314 10.3390/jpm12081314 36013263
    [Google Scholar]
  27. Fawzi A. Moosavi Dezfooli S.M. Frossard P. The robustness of deep networks: A geometrical perspective. IEEE Signal Process. Mag. 2017 34 6 50 62 10.1109/MSP.2017.2740965
    [Google Scholar]
  28. Brown O. Curtis A. Goodwin J. Principles for evaluation of AI/ML model performance and robustness. ArXiv 10.48550/arXiv.2107.02868
    [Google Scholar]
  29. Gama J. Zliobaite I. Bifet A. Pechenizkiy M. Bouchachia A. A survey on concept drift adaptation. ACM Comput. Surv. 2014 46 4 1 37 10.1145/2523813
    [Google Scholar]
  30. Pachmayr E. Treese C. Stein U. Underlying mechanisms for distant metastasis molecular biology. Visc. Med. 2017 33 1 11 20 10.1159/000454696 28785563
    [Google Scholar]
  31. Janin M. Davalos V. Esteller M. Cancer metastasis under the magnifying glass of epigenetics and epitranscriptomics. Cancer Metastasis Rev. 2023 42 4 1071 1112 10.1007/s10555‑023‑10120‑3 37369946
    [Google Scholar]
  32. Sell M.C. Ramlogan Steel C.A. Steel J.C. Dhungel B.P. MicroRNAs in cancer metastasis: Biological and therapeutic implications. Expert Rev. Mol. Med. 25 e14 2023 10.1017/erm.2023.7
    [Google Scholar]
  33. Peng Y. Croce C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016 1 1 15004 10.1038/sigtrans.2015.4 29263891
    [Google Scholar]
  34. Malka Tunitsky N. Sas Chen A. Role of RNA modifications in cancer metastasis. Curr. Opin. Genet. Dev. 2024 87 102232 10.1016/j.gde.2024.102232 39047587
    [Google Scholar]
  35. Popnikolov N.K. Dalwadi B.H. Thomas J.D. Johannes G.J. Imagawa W.T. Association of autotaxin and lysophosphatidic acid receptor 3 with aggressiveness of human breast carcinoma. Tumour Biol. 2012 33 6 2237 2243 10.1007/s13277‑012‑0485‑1 22922883
    [Google Scholar]
  36. Li G.C. Qin X.L. Song H.H. Li Y.N. Qiu Y.Y. Cui S.C. Wang Y.S. Wang H. Gong J.L. Retraction: Upregulated microRNA-15b alleviates ovarian cancer through inhitbition of the PI3K/Akt pathway by targeting LPAR3 J. Cell. Physiol. 2019 234 12 22331 22342 10.1002/jcp.28799 31140597
    [Google Scholar]
  37. Kan B. Yan G. Shao Y. Zhang Z. Xue H. CircRNA RNF10 inhibits tumorigenicity by targeting miR 942 5p/GOLIM4 axis in breast cancer. Environ. Mol. Mutagen. 2022 63 7 362 372 10.1002/em.22506 36054164
    [Google Scholar]
  38. Zheng W. Wang X. Yu Y. Ji C. Fang L. CircRNF10-DHX15 interaction suppressed breast cancer progression by antagonizing DHX15 NF KB p65 positive feedback loop. Cell. Mol. Biol. Lett. 2023 28 1 34 10.1186/s11658‑023‑00448‑7 37101128
    [Google Scholar]
  39. Horm T.M. Schroeder J.A. MUC1 and metastatic cancer. Cell Adhes. Migr. 2013 7 2 187 198 10.4161/cam.23131 23303343
    [Google Scholar]
  40. Apostolopoulos V. Pietersz G.A. Tsibanis A. Tsikkinis A. Drakaki H. Loveland B.E. Piddlesden S.J. Plebanski M. Pouniotis D.S. Alexis M.N. McKenzie I.F. Vassilaros S. Pilot phase III immunotherapy study in early-stage breast cancer patients using oxidized mannan-MUC1 [ISRCTN71711835]. Breast Cancer Res. 2006 8 3 R27 10.1186/bcr1505 16776849
    [Google Scholar]
  41. Long J.S. Kania E. McEwan D.G. Barthet V.J.A. Brucoli M. Ladds M.J.G.W. Nassing C. Ryan K.M. ATG7 is a haploinsufficient repressor of tumor progression and promoter of metastasis. Proc. Natl. Acad. Sci. USA 2022 119 28 e2113465119 10.1073/pnas.2113465119 35867735
    [Google Scholar]
  42. Nagaoka K. Fujii K. Zhang H. Usuda K. Watanabe G. Ivshina M. Richter J.D. CPEB1 mediates epithelial to Mesenchyme transition and breast cancer metastasis. Oncogene 2016 35 22 2893 2901 10.1038/onc.2015.350 26411364
    [Google Scholar]
  43. Ribeiro M.T. Singh S. Guestrin C. "Why should i trust you?" Explaining the predictions of any classifier Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining California, San Francisco, USA, Aug. 13-17, 2016, pp. 1135-1144. 10.1145/2939672.2939778
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936338628241104110200
Loading
/content/journals/cbio/10.2174/0115748936338628241104110200
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test