Skip to content
2000
image of Biopanning Data Bank 2023: Updating and New Findings

Abstract

Background

Biopanning, or phage display technology, has gained considerable research attention for discovering peptides, and antibodies, and understanding protein interactions, which are crucial for developing targeted therapeutics. The Biopanning Data Bank (BDB, http://i.uestc.edu.cn/bdb) serves as a repository for peptide biopanning results. However, its last significant update was in 2018, highlighting a research gap that needs urgent attention.

Objectives

This study aims to update BDB with the most recent data and enhance the identification of Target-Unrelated Peptides (TUPs).

Method

A search of PubMed was conducted for recent articles related to “phage display” published between January 2018 and May 2023. Relevant data were manually curated and added to BDB. Each peptide’s target was identified using MimoSearch, while TUPScan was used to detect new TUPs.

Results

As of October 2023, BDB contains 3,682 biopanning datasets from 1,771 papers. These datasets included 124 NGPD datasets and 3,558 conventional biopanning datasets, featuring 34,078 peptide sequences, 593 templates, 2,231 targets, 524 peptide libraries, and 324 crystal structures. Our analysis identified 1,110 possible TUPs and 60 highly reliable TUPs, including 26 novel discoveries.

Conclusion

This update addresses critical research gaps by incorporating recent peptide data and introducing novel TUPs. BDB remains the most comprehensive resource for biopanning, playing a crucial role in peptide library research and supporting the development of new TUP predictors and mimotope decoding tools.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936329911241015123132
2024-10-16
2025-01-19
Loading full text...

Full text loading...

References

  1. Smith G.P. Phage display: Simple evolution in a petri dish (nobel lecture). Angew. Chem. 2019 131 41 14566 14576 10.1002/ange.201908308
    [Google Scholar]
  2. Winter G. Harnessing evolution to make medicines (nobel lecture). Angew. Chem. Int. Ed. 2019 58 41 14438 14445 10.1002/anie.201909343 31529671
    [Google Scholar]
  3. He B. Mao C. Ru B. Han H. Zhou P. Huang J. Epitope Mapping of metuximab on CD147 using phage display and molecular docking. J. Mol. Biol. 2013 425 1 171 183 10.1016/j.jmb.2012.10.025 23154169
    [Google Scholar]
  4. Tong A.H.Y. Drees B. Nardelli G. Bader G.D. Brannetti B. Castagnoli L. Evangelista M. Ferracuti S. Nelson B. Paoluzi S. Quondam M. Zucconi A. Hogue C.W.V. Fields S. Boone C. Cesareni G. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 2002 295 5553 321 324 10.1126/science.1064987 11743162
    [Google Scholar]
  5. Zhang Y. He B. Liu K. Ning L. Luo D. Xu K. Zhu W. Wu Z. Huang J. Xu X. A novel peptide specifically binding to VEGF receptor suppresses angiogenesis in vitro and in vivo. Signal Transduct. Target. Ther. 2017 2 1 17010 10.1038/sigtrans.2017.10 29263914
    [Google Scholar]
  6. Petrenko V.A. Phage display’s prospects for early diagnosis of prostate cancer. Viruses 2024 16 2 277 10.3390/v16020277 38400052
    [Google Scholar]
  7. Palma M. Epitopes and mimotopes identification using phage display for vaccine development against infectious pathogens. Vaccines (Basel) 2023 11 7 1176 10.3390/vaccines11071176 37514992
    [Google Scholar]
  8. França R.K.A. Studart I.C. Bezerra M.R.L. Pontes L.Q. Barbosa A.M.A. Brigido M.M. Furtado G.P. Maranhão A.Q. Progress on phage display technology: Tailoring antibodies for cancer immunotherapy. Viruses 2023 15 9 1903 10.3390/v15091903 37766309
    [Google Scholar]
  9. Jiang L. Ning L. Pu C. Wang Z. He B. Huang J. Characterization of endogenous nucleic acids that bind to NgAgo in Natronobacterium gregoryi sp2 cells. Biocell 2022 46 2 547 557 10.32604/biocell.2021.016500
    [Google Scholar]
  10. Ru B. Huang J. Dai P. Li S. Xia Z. Ding H. Lin H. Guo F.B. Wang X. MimoDB: A new repository for mimotope data derived from phage display technology. Molecules 2010 15 11 8279 8288 10.3390/molecules15118279 21079566
    [Google Scholar]
  11. Huang J. Ru B. Zhu P. Nie F. Yang J. Wang X. Dai P. Lin H. Guo F.B. Rao N. MimoDB 2.0: A mimotope database and beyond. Nucleic Acids Res. 2012 40 D1 D271 D277 10.1093/nar/gkr922 22053087
    [Google Scholar]
  12. He B. Chai G. Duan Y. Yan Z. Qiu L. Zhang H. Liu Z. He Q. Han K. Ru B. Guo F.B. Ding H. Lin H. Wang X. Rao N. Zhou P. Huang J. BDB: Biopanning data bank. Nucleic Acids Res. 2016 44 D1 D1127 D1132 10.1093/nar/gkv1100 26503249
    [Google Scholar]
  13. Christiansen A. Kringelum J.V. Hansen C.S. Bøgh K.L. Sullivan E. Patel J. Rigby N.M. Eiwegger T. Szépfalusi Z. Masi F. Nielsen M. Lund O. Dufva M. High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum. Sci. Rep. 2015 5 1 12913 10.1038/srep12913 26246327
    [Google Scholar]
  14. Kamstrup Sell D. Sloth A.B. Bakhshinejad B. Kjaer A. A white plaque, associated with genomic deletion, derived from M13KE-based peptide library is enriched in a target-unrelated manner during phage display biopanning due to propagation advantage. Int. J. Mol. Sci. 2022 23 6 3308 10.3390/ijms23063308 35328728
    [Google Scholar]
  15. Bakhshinejad B. Sadeghizadeh M. A polystyrene binding target-unrelated peptide isolated in the screening of phage display library. Anal. Biochem. 2016 512 120 128 10.1016/j.ab.2016.08.013 27555439
    [Google Scholar]
  16. He B. Chen H. Li N. Huang J. SAROTUP: A suite of tools for finding potential target-unrelated peptides from phage display data. Int. J. Biol. Sci. 2019 15 7 1452 1459 10.7150/ijbs.31957 31337975
    [Google Scholar]
  17. He B. Jiang L. Duan Y. Chai G. Fang Y. Kang J. Yu M. Li N. Tang Z. Yao P. Wu P. Derda R. Huang J. Biopanning data bank 2018: Hugging next generation phage display. Database (Oxford) 2018 2018 bay032 10.1093/database/bay032 29688378
    [Google Scholar]
  18. He B. Yang S. Long J. Chen X. Zhang Q. Gao H. Chen H. Huang J. TUPDB: Target-unrelated peptide data bank. Interdiscip. Sci. 2021 13 3 426 432 10.1007/s12539‑021‑00436‑5 33993461
    [Google Scholar]
  19. He B. Chen H. Huang J. PhD7Faster 2.0: Predicting clones propagating faster from the Ph.D.-7 phage display library by coupling PseAAC and tripeptide composition. PeerJ 2019 7 6 e7131 10.7717/peerj.7131 31245183
    [Google Scholar]
  20. He B. Kang J. Ru B. Ding H. Zhou P. Huang J. SABinder: A web service for predicting streptavidin-binding peptides. BioMed Res. Int. 2016 2016 1 8 10.1155/2016/9175143 27610387
    [Google Scholar]
  21. Li N. Kang J. Jiang L. He B. Lin H. Huang J. PSBinder: A web service for predicting polystyrene surface-binding peptides. BioMed Res. Int. 2017 2017 1 5 10.1155/2017/5761517 29445741
    [Google Scholar]
  22. Rahn J.J. Lun X. Jorch S.K. Hao X. Venugopal C. Vora P. Ahn B.Y. Babes L. Alshehri M.M. Cairncross J.G. Singh S.K. Kubes P. Senger D.L. Robbins S.M. Development of a peptide-based delivery platform for targeting malignant brain tumors. Biomaterials 2020 252 120105 10.1016/j.biomaterials.2020.120105 32417652
    [Google Scholar]
  23. Rothenstein D. Claasen B. Omiecienski B. Lammel P. Bill J. Isolation of ZnO-binding 12-mer peptides and determination of their binding epitopes by NMR spectroscopy. J. Am. Chem. Soc. 2012 134 30 12547 12556 10.1021/ja302211w 22720657
    [Google Scholar]
  24. ’t Hoen P.A.C. Jirka S.M.G. ten Broeke B.R. Schultes E.A. Aguilera B. Pang K.H. Heemskerk H. Aartsma-Rus A. van Ommen G.J. den Dunnen J.T. Phage display screening without repetitious selection rounds. Anal. Biochem. 2012 421 2 622 631 10.1016/j.ab.2011.11.005 22178910
    [Google Scholar]
  25. Lin H. Ma Z. Hou X. Chen L. Fan H. Construction and immunogenicity of a recombinant swinepox virus expressing a multi-epitope peptide for porcine reproductive and respiratory syndrome virus. Sci. Rep. 2017 7 1 43990 10.1038/srep43990 28272485
    [Google Scholar]
  26. Gao X. Ran N. Dong X. Zuo B. Yang R. Zhou Q. Moulton H.M. Seow Y. Yin H. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci. Transl. Med. 2018 10 444 eaat0195 10.1126/scitranslmed.aat0195 29875202
    [Google Scholar]
  27. Hunt A. Addepalli B. The interaction between two Arabidopsis polyadenylation factor subunits involves an evolutionarily-conserved motif and has implications for the assembly and function of the polyadenylation complex. Protein Pept. Lett. 2008 15 1 76 88 10.2174/092986608783330431 18221017
    [Google Scholar]
  28. Segvich S. Biswas S. Becker U. Kohn D.H. Identification of peptides with targeted adhesion to bone-like mineral via phage display and computational modeling. Cells Tissues Organs 2009 189 1-4 245 251 10.1159/000151380 18701808
    [Google Scholar]
  29. Caprini A. Silva D. Zanoni I. Cunha C. Volontè C. Vescovi A. Gelain F. A novel bioactive peptide: Assessing its activity over murine neural stem cells and its potential for neural tissue engineering. N. Biotechnol. 2013 30 5 552 562 10.1016/j.nbt.2013.03.005 23541699
    [Google Scholar]
  30. Wang L. Deng X. Liu H. Zhao L. You X. Dai P. Wan K. Zeng Y. The mimic epitopes of Mycobacterium tuberculosis screened by phage display peptide library have serodiagnostic potential for tuberculosis. Pathog. Dis. 2016 74 8 ftw091 10.1093/femspd/ftw091 27609463
    [Google Scholar]
  31. Estephan E. Dao J. Saab M.B. Panayotov I. Martin M. Larroque C. Gergely C. Cuisinier F.J.G. Levallois B. SVSVGMKPSPRP: A broad range adhesion peptide. Biomed. Tech. (Berl.) 2012 57 6 481 489 10.1515/bmt‑2011‑0109 23183721
    [Google Scholar]
  32. Díaz-Perlas C. Sánchez-Navarro M. Oller-Salvia B. Moreno M. Teixidó M. Giralt E. Phage display as a tool to discover blood–brain barrier (BBB)‐shuttle peptides: Panning against a human BBB cellular model. Biopolymers 2017 108 1 e22928 10.1002/bip.22928 27486695
    [Google Scholar]
  33. Zhang H. Guo Z. He B. Dai W. Zhang H. Wang X. Zhang Q. The improved delivery to breast cancer based on a novel nanocarrier modified with high‐affinity peptides discovered by phage display. Adv. Healthc. Mater. 2018 7 20 1800269 10.1002/adhm.201800269 29956504
    [Google Scholar]
  34. Shi F. Gan L. Wang Y. Wang P. Impedimetric biosensor fabricated with affinity peptides for sensitive detection of Escherichia coli O157:H7. Biotechnol. Lett. 2020 42 5 825 832 10.1007/s10529‑020‑02817‑0 31993846
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936329911241015123132
Loading
/content/journals/cbio/10.2174/0115748936329911241015123132
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: biopanning ; database ; target-unrelated peptides ; Phage display
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test