Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

Accurately predicting survival in hospitalized COVID-19 patients is crucial but challenging due to multiple risk factors. This study addresses the limitations of existing research by proposing a comprehensive machine-learning framework to identify key mortality risk factors and develop a robust predictive model.

Objective

This study proposes an analytical framework that leverages various machine learning techniques to predict the survival of hospitalized COVID-19 patients accurately. The framework comprehensively evaluates multiple clinical indicators and their associations with mortality risk.

Methods

Patient data, including gender, age, health condition, and smoking habits, was divided into discharged (=507) and deceased (=300) categories. Each patient was characterized by 92 clinical features. The framework incorporated seven feature ranking algorithms (LASSO, LightGBM, MCFS, mRMR, RF, CATBoost, and XGBoost), the IFS method, and four classification algorithms (DT, KNN, RF, and SVM).

Results

Age, diabetes, dyspnea, chronic kidney failure, and high blood pressure were identified as the most important risk factors. The best model achieved an F1-score of 0.857 using KNN with 34 selected features.

Conclusion

Our findings provide a comprehensive analysis of COVID-19 mortality risk factors and develops a robust predictive model. The findings highlight the increased risk in patients with comorbidities, consistent with existing literature. The proposed framework can aid in developing personalized treatment plans and allocating healthcare resources effectively.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936306893240720192301
2024-08-01
2025-04-15
Loading full text...

Full text loading...

References

  1. LongB. CariusB.M. ChavezS. LiangS.Y. BradyW.J. KoyfmanA. GottliebM. Clinical update on COVID-19 for the emergency clinician: Presentation and evaluation.Am. J. Emerg. Med.202254465710.1016/j.ajem.2022.01.02835121478
    [Google Scholar]
  2. WHO Coronavirus (COVID-19) Dashboard.2022Available from:https://covid19.who.int(accessed on 27-6-2024)
  3. ZhangJ. DongX. LiuG. GaoY. Risk and protective factors for COVID-19 morbidity, severity, and mortality.Clin. Rev. Allergy Immunol.20226419010710.1007/s12016‑022‑08921‑535044620
    [Google Scholar]
  4. GaoY. DingM. DongX. ZhangJ. Kursat AzkurA. AzkurD. GanH. SunY. FuW. LiW. LiangH. CaoY. YanQ. CaoC. GaoH. BrüggenM.C. van de VeenW. SokolowskaM. AkdisM. AkdisC.A. Risk factors for severe and critically ill COVID‐19 patients: A review.Allergy202176242845510.1111/all.1465733185910
    [Google Scholar]
  5. WynantsL. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal.BMJ2020369m132810.1136/bmj.m1328
    [Google Scholar]
  6. LiT. HuangT. GuoC. WangA. ShiX. MoX. LuQ. SunJ. HuiT. TianG. WangL. YangJ. Genomic variation, origin tracing, and vaccine development of SARS-CoV-2: A systematic review.Innovation20212210011610.1016/j.xinn.2021.10011633997827
    [Google Scholar]
  7. AttawayA.H. ScheragaR.G. BhimrajA. BiehlM. HatipoğluU. Severe covid-19 pneumonia: pathogenesis and clinical management.BMJ2021372n43610.1136/bmj.n43633692022
    [Google Scholar]
  8. MahilkarS. AgrawalS. ChaudharyS. ParikhS. SonkarS.C. VermaD.K. ChitaliaV. MehtaD. KonerB.C. VijayN. ShastriJ. SunilS. SARS-CoV-2 variants: Impact on biological and clinical outcome.Front. Med.2022999596010.3389/fmed.2022.99596036438034
    [Google Scholar]
  9. MukundK. NayakP. AshokkumarC. RaoS. AlmedaJ. Betancourt-GarciaM.M. SindhiR. SubramaniamS. Immune response in severe and non-severe coronavirus disease 2019 (COVID-19) infection: A mechanistic landscape.Front. Immunol.20211273807310.3389/fimmu.2021.73807334721400
    [Google Scholar]
  10. GavriatopoulouM. Ntanasis-StathopoulosI. KorompokiE. FotiouD. MigkouM. TzanninisI.G. PsaltopoulouT. KastritisE. TerposE. DimopoulosM.A. Emerging treatment strategies for COVID-19 infection.Clin. Exp. Med.202121216717910.1007/s10238‑020‑00671‑y33128197
    [Google Scholar]
  11. BottrighiA. PennisiM. RovetaA. MassarinoC. CassinariA. BettiM. BolgeoT. BertolottiM. RavaE. MaconiA. A machine learning approach for predicting high risk hospitalized patients with COVID-19 SARS-Cov-2.BMC Med. Inform. Decis. Mak.202222134010.1186/s12911‑022‑02076‑136578017
    [Google Scholar]
  12. LiuH. SetionoR. Incremental feature selection.Appl. Intell.19989321723010.1023/A:1008363719778
    [Google Scholar]
  13. HeidariA. Jafari NavimipourN. UnalM. ToumajS. Machine learning applications for COVID-19 outbreak management.Neural Comput. Appl.20223418153131534810.1007/s00521‑022‑07424‑w35702664
    [Google Scholar]
  14. HenryB.M. de OliveiraM.H.S. BenoitS. PlebaniM. LippiG. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis.Clin. Chem. Lab. Med.20205871021102810.1515/cclm‑2020‑036932286245
    [Google Scholar]
  15. RanstamJ. CookJ.A. LASSO regression.Br. J. Surg.2018105101348134810.1002/bjs.10895
    [Google Scholar]
  16. KeG. Lightgbm: A highly efficient gradient boosting decision tree.Adv. Neural Inf. Process. Syst.20173031463154
    [Google Scholar]
  17. DramińskiM. KoronackiJ. rmcfs: An R package for monte carlo feature selection and interdependency discovery.J. Stat. Softw.2018851212810.18637/jss.v085.i12
    [Google Scholar]
  18. Hanchuan Peng Fuhui Long DingC. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.IEEE Trans. Pattern Anal. Mach. Intell.20052781226123810.1109/TPAMI.2005.15916119262
    [Google Scholar]
  19. BreimanL. Random forests.Mach. Learn.200145153210.1023/A:1010933404324
    [Google Scholar]
  20. DorogushA.V. ErshovV. GulinA. CatBoost: gradient boosting with categorical features support.arXiv:1810.11363, 2018.
    [Google Scholar]
  21. ChenT. GuestrinC. XGBoost: A scalable tree boosting system.KDD '16: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining13 August 2016, New York, NY, United States, pp. 785 - 794.10.1145/2939672.2939785
    [Google Scholar]
  22. LiH. ZhangS. ChenL. PanX. LiZ. HuangT. CaiY.D. Identifying functions of proteins in mice with functional embedding features.Front. Genet.20221390904010.3389/fgene.2022.90904035651937
    [Google Scholar]
  23. LiH. HuangF. LiaoH. LiZ. FengK. HuangT. CaiY.D. Identification of covid-19-specific immune markers using a machine learning method.Front. Mol. Biosci.2022995262610.3389/fmolb.2022.95262635928229
    [Google Scholar]
  24. LiZ. GuoW. DingS. ChenL. FengK. HuangT. CaiY.D. Identifying key microrna signatures for neurodegenerative diseases with machine learning methods.Front. Genet.20221388099710.3389/fgene.2022.88099735528544
    [Google Scholar]
  25. LuJ. MengM. ZhouX. DingS. FengK. ZengZ. HuangT. CaiY.D. Identification of covid-19 severity biomarkers based on feature selection on single-cell rna-seq data of CD8+ T cells.Front. Genet.202213105377210.3389/fgene.2022.105377236437952
    [Google Scholar]
  26. HuangF. Analysis and prediction of protein stability based on interaction network, gene ontology, and KEGG pathway enrichment scores.Prot Proteom.20231871314088910.1016/j.bbapap.2023.140889
    [Google Scholar]
  27. HuangF. MaQ. RenJ. LiJ. WangF. HuangT. CaiY.D. Identification of smoking-associated transcriptome aberration in blood with machine learning methods.BioMed Res. Int.2023202311310.1155/2023/533336136644165
    [Google Scholar]
  28. ZhaoX. ChenL. LuJ. A similarity-based method for prediction of drug side effects with heterogeneous information.Math. Biosci.201830613614410.1016/j.mbs.2018.09.01030296417
    [Google Scholar]
  29. PedregosaF. Scikit-learn: Machine learning in python.J. Mach. Learn. Res.20111228252830
    [Google Scholar]
  30. ChawlaN.V. BowyerK.W. HallL.O. KegelmeyerW.P. SMOTE: Synthetic minority over-sampling technique.J. Artif. Intell. Res.200216132135710.1613/jair.953
    [Google Scholar]
  31. SafavianS.R. LandgrebeD. A survey of decision tree classifier methodology.IEEE Trans. Syst. Man Cybern.199121366067410.1109/21.97458
    [Google Scholar]
  32. CoverT. HartP. Nearest neighbor pattern classification.IEEE Trans. Inf. Theory1967131212710.1109/TIT.1967.1053964
    [Google Scholar]
  33. CortesC. VapnikV. Support-vector networks.Mach. Learn.199520327329710.1007/BF00994018
    [Google Scholar]
  34. KohaviR. A study of cross-validation and bootstrap for accuracy estimation and model selection.IJCAI'95: Proceedings of the 14th international joint conference on Artificial intelligence20 August 1995, San Francisco, CA, United States, 1995.
    [Google Scholar]
  35. PowersD. Evaluation: From precision, recall and f-measure to roc., informedness, markedness and correlation.J. Mach. Learn. Technol.2011213763
    [Google Scholar]
  36. RenJ. ZhangY. GuoW. FengK. YuanY. HuangT. CaiY.D. Identification of genes associated with the impairment of olfactory and gustatory functions in covid-19 via machine-learning methods.Life202313379810.3390/life1303079836983953
    [Google Scholar]
  37. ChenL. ChenK. ZhouB. Inferring drug-disease associations by a deep analysis on drug and disease networks.Math. Biosci. Eng.2023208141361415710.3934/mbe.202363237679129
    [Google Scholar]
  38. ChenL. LiL. Prediction of drug pathway-based disease classes using multiple properties of drugs.Curr. Bioinform.202419985987210.2174/0115748936284973240105115444
    [Google Scholar]
  39. YangY. ChenL. Identification of drug–disease associations by using multiple drug and disease networks.Curr. Bioinform.2022171485910.2174/1574893616666210825115406
    [Google Scholar]
  40. ChenL. ZhaoX. PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path.Math. Biosci. Eng.20232012205532057510.3934/mbe.202390938124565
    [Google Scholar]
  41. ChenL. ChenY. RMTLysPTM: recognizing multiple types of lysine PTM sites by deep analysis on sequences.Brief. Bioinform.2023251bbad45010.1093/bib/bbad45038066710
    [Google Scholar]
  42. ChenL. QuR. LiuX. Improved multi-label classifiers for predicting protein subcellular localization.Math. Biosci. Eng.202321121423610.3934/mbe.202401038303420
    [Google Scholar]
  43. GrasselliG. GrecoM. ZanellaA. AlbanoG. AntonelliM. BellaniG. BonanomiE. CabriniL. CarlessoE. CastelliG. CattaneoS. CeredaD. ColomboS. ColuccelloA. CresciniG. Forastieri MolinariA. FotiG. FumagalliR. IottiG.A. LangerT. LatronicoN. LoriniF.L. MojoliF. NataliniG. PessinaC.M. RanieriV.M. RechR. ScudellerL. RosanoA. StortiE. ThompsonB.T. TiraniM. VillaniP.G. PesentiA. CecconiM. AgosteoE. AlbanoG. AlbertinA. AlborghettiA. AldegheriG. AntoniniB. BarbaraE. BardelloniG. BasilicoS. BelgiornoN. BellaniG. BerettaE. BerselliA. BianciardiL. BonanomiE. BonazziS. BorelliM. BottinoN. BronziniN. BrusatoriS. CabriniL. CapraC. CarnevaleL. CastelliG. CatenaE. CattaneoS. CecconiM. CelottiS. CeruttiS. ChiumelloD. CirriS. CiterioG. ColomboS. ColuccelloA. CoppiniD. CoronaA. CortellazziP. CostantiniE. CovelloR.D. CresciniG. De FilippiG. Dei PoliM. DughiP. FieniF. FlorioG. Forastieri MolinariA. FotiG. FumagalliR. GallettiM. GallioliG.A. GayH. GemmaM. GnesinP. GrasselliG. GrecoS. GrecoM. GrossoP. GuatteriL. GuzzonD. IottiG.A. KeimR. LangerT. LatronicoN. LombardoA. LoriniF.L. MamprinF. MarinoG. MarinoF. MerliG. MicucciA. MilitanoC.R. MojoliF. MontiG. MuttiniS. NadalinS. NataliniG. PerazzoP. PeregoG.B. PerottiL. PesentiA. PessinaC.M. PetrucciN. PezziA. PivaS. PortellaG. ProttiA. RacagniM. RadrizzaniD. RaimondiM. RanucciM. RechR. RiccioM. RosanoA. RuggeriP. SalaG. SalviL. SebastianoP. SevergniniP. SigurtàD. StocchettiN. StortiE. SubertM. TavolaM. TodaroS. TorrigliaF. TubioloD. ValsecchiR. VillaniP.G. ViolaU. VitaleG. ZambonM. ZanellaA. ZoiaE. COVID-19 Lombardy ICU Network Risk factors associated with mortality among patients with COVID-19 in intensive care units in lombardy, Italy.JAMA Intern. Med.2020180101345135510.1001/jamainternmed.2020.353932667669
    [Google Scholar]
  44. ChenT. WuD. ChenH. YanW. YangD. ChenG. MaK. XuD. YuH. WangH. WangT. GuoW. ChenJ. DingC. ZhangX. HuangJ. HanM. LiS. LuoX. ZhaoJ. NingQ. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study.BMJ2020368m109110.1136/bmj.m109132217556
    [Google Scholar]
  45. DadrasO. SeyedAlinaghiS. KarimiA. ShamsabadiA. QaderiK. RamezaniM. MirghaderiS.P. MahdiabadiS. VahediF. SaeidiS. ShojaeiA. MehrtakM. AzarS.A. MehraeenE. VoltarelliF.A. Retracted : COVID‐19 mortality and its predictors in the elderly: A systematic review.Health Sci. Rep.202253e65710.1002/hsr2.65735620541
    [Google Scholar]
  46. HuangF. ChenL. GuoW. ZhouX. FengK. HuangT. CaiY. Identifying COVID-19 severity-related SARS-CoV-2 mutation using a machine learning method.Life (Basel)202212680610.3390/life1206080635743837
    [Google Scholar]
  47. AkinosoglouK. SchinasG. AlmyroudiM.P. GogosC. DimopoulosG. The impact of age on intensive care.Ageing Res. Rev.20238410183210.1016/j.arr.2022.10183236565961
    [Google Scholar]
  48. Rivera-TorresJ. GirónN. San JoséE. COVID-19: A comprehensive review on cardiovascular alterations, immunity, and therapeutics in older adults.J. Clin. Med.202312248810.3390/jcm1202048836675416
    [Google Scholar]
  49. NikolopoulouG.B. MaltezouH.C. COVID-19 in Children: Where do we Stand?Arch. Med. Res.20225311810.1016/j.arcmed.2021.07.00234311990
    [Google Scholar]
  50. TsabouriS. MakisA. KosmeriC. SiomouE. Risk factors for severity in children with coronavirus disease 2019.Pediatr. Clin. North Am.202168132133810.1016/j.pcl.2020.07.01433228941
    [Google Scholar]
  51. BunyavanichS. DoA. VicencioA. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults.JAMA2020323232427242910.1001/jama.2020.870732432657
    [Google Scholar]
  52. WoodruffR.C. CampbellA.P. TaylorC.A. ChaiS.J. KawasakiB. MeekJ. AndersonE.J. WeigelA. MonroeM.L. ReegL. ByeE. SosinD.M. MuseA. BennettN.M. BillingL.M. SuttonM. TalbotH.K. McCaffreyK. PhamH. PatelK. WhitakerM. McMorrowM. HaversF. Risk factors for severe COVID-19 in children.Pediatrics20221491e202105341810.1542/peds.2021‑05341834935038
    [Google Scholar]
  53. KastoraS. PatelM. CarterB. DelibegovicM. MyintP.K. Impact of diabetes on COVID‐19 mortality and hospital outcomes from a global perspective: An umbrella systematic review and meta‐analysis.Endocrinol. Diabetes Metab.202253e0033810.1002/edm2.33835441801
    [Google Scholar]
  54. DallavalasaS. TulimilliS.V. PrakashJ. RamachandraR. MadhunapantulaS.V. VeerannaR.P. COVID-19: Diabetes perspective—pathophysiology and management.Pathogens202312218410.3390/pathogens1202018436839456
    [Google Scholar]
  55. DeyR.K. HilmyA.I. ImadH.A. YoosufA.A. LatheefA.A. COVID-19 and emergencies in patients with diabetes: two case reports.J. Med. Case Reports20211515710.1186/s13256‑020‑02659‑433531061
    [Google Scholar]
  56. SinghA.K. KhuntiK. COVID-19 and Diabetes.Annu. Rev. Med.202273112914710.1146/annurev‑med‑042220‑01185734379444
    [Google Scholar]
  57. ZhengZ. PengF. XuB. ZhaoJ. LiuH. PengJ. LiQ. JiangC. ZhouY. LiuS. YeC. ZhangP. XingY. GuoH. TangW. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis.J. Infect.2020812e16e2510.1016/j.jinf.2020.04.02132335169
    [Google Scholar]
  58. AllaliG. MartiC. GrosgurinO. Morélot-PanziniC. SimilowskiT. AdlerD. Dyspnea: The vanished warning symptom of COVID‐19 pneumonia.J. Med. Virol.202092112272227310.1002/jmv.2617232530534
    [Google Scholar]
  59. LiuW. YangC. LiaoY. WanF. LinL. HuangX. ZhangB.H. YuanY. ZhangP. ZhangX.J. SheZ.G. WangL. LiH. Risk factors for COVID-19 progression and mortality in hospitalized patients without pre-existing comorbidities.J. Infect. Public Health2022151132010.1016/j.jiph.2021.11.01234861603
    [Google Scholar]
  60. GansevoortR.T. HilbrandsL.B. CKD is a key risk factor for COVID-19 mortality.Nat. Rev. Nephrol.2020161270570610.1038/s41581‑020‑00349‑432848205
    [Google Scholar]
  61. JdiaaS.S. MansourR. El AlayliA. GautamA. ThomasP. MustafaR.A. COVID–19 and chronic kidney disease: an updated overview of reviews.J. Nephrol.2022351698510.1007/s40620‑021‑01206‑835013985
    [Google Scholar]
  62. LongJ.D. StrohbehnI. SawtellR. BhattacharyyaR. SiseM. COVID-19 Survival and its impact on chronic kidney disease.Transl. Res.2022241708210.1016/j.trsl.2021.11.00334774843
    [Google Scholar]
  63. SörlingA. NordbergP. HofmannR. HäbelH. SvenssonP. Association between CKD, obesity, cardiometabolic risk factors, and severe COVID-19 outcomes.Kidney Int. Rep.20238477578410.1016/j.ekir.2023.01.01036685734
    [Google Scholar]
  64. Pio-AbreuA. do NascimentoM.M. VieiraM.A. de Menezes NevesP.D.M. LugonJ.R. SessoR. High mortality of CKD patients on hemodialysis with Covid-19 in Brazil.J. Nephrol.202033587587710.1007/s40620‑020‑00823‑z32770522
    [Google Scholar]
  65. PanW. ZhangJ. WangM. YeJ. XuY. ShenB. HeH. WangZ. YeD. ZhaoM. LuoZ. LiuM. ZhangP. GuJ. LiuM. LiD. LiuJ. WanJ. Clinical features of COVID-19 in patients with essential hypertension and the impacts of renin-angiotensin-aldosterone system inhibitors on the prognosis of COVID-19 patients.Hypertension202076373274110.1161/HYPERTENSIONAHA.120.1528932654555
    [Google Scholar]
  66. McFarlaneE. LinschotenM. AsselbergsF.W. LacyP.S. JedrzejewskiD. WilliamsB. CAPACITY-COVID Consortium The impact of pre-existing hypertension and its treatment on outcomes in patients admitted to hospital with COVID-19.Hypertens. Res.202245583484510.1038/s41440‑022‑00893‑535352027
    [Google Scholar]
  67. AkpekM. Does COVID-19 cause hypertension?Angiology202273768268710.1177/0003319721105390334889662
    [Google Scholar]
  68. WatanabeM. BalenaA. TuccinardiD. TozziR. RisiR. MasiD. CaputiA. RossettiR. SpoltoreM.E. FilippiV. GangitanoE. ManfriniS. MarianiS. LubranoC. LenziA. MastroianniC. GnessiL. Central obesity, smoking habit, and hypertension are associated with lower antibody titres in response to COVID‐19 mRNA vaccine.Diabetes Metab. Res. Rev.2022381e346510.1002/dmrr.346533955644
    [Google Scholar]
  69. AlqahtaniJ.S. OyeladeT. AldhahirA.M. AlghamdiS.M. AlmehmadiM. AlqahtaniA.S. QuaderiS. MandalS. HurstJ.R. Prevalence, severity and mortality associated with COPD and smoking in patients with COVID-19: a rapid systematic review and meta-analysis.PLoS One2020155e023314710.1371/journal.pone.023314732392262
    [Google Scholar]
  70. SinghD. MathioudakisA.G. HighamA. Chronic obstructive pulmonary disease and COVID-19: interrelationships.Curr. Opin. Pulm. Med.2022282768310.1097/MCP.000000000000083434690257
    [Google Scholar]
  71. Rodriguez-MiguelezP. HeefnerA. CarboneS. Recognizing risk factors associated with poor outcomes among patients with COVID-19.Prog. Cardiovasc. Dis.20237631110.1016/j.pcad.2023.01.00636693489
    [Google Scholar]
  72. ParkR. LeeS.A. KimS.Y. de MeloA.C. KasiA. Association of active oncologic treatment and risk of death in cancer patients with COVID-19: a systematic review and meta-analysis of patient data.Acta Oncol.2021601131910.1080/0284186X.2020.183794633131376
    [Google Scholar]
  73. Chavez-MacGregorM. LeiX. ZhaoH. ScheetP. GiordanoS.H. Evaluation of COVID-19 mortality and adverse outcomes in US patients with or without cancer.JAMA Oncol.202281697810.1001/jamaoncol.2021.514834709356
    [Google Scholar]
  74. FendlerA. de VriesE.G.E. GeurtsvanKesselC.H. HaanenJ.B. WörmannB. TurajlicS. von Lilienfeld-ToalM. COVID-19 vaccines in patients with cancer: immunogenicity, efficacy and safety.Nat. Rev. Clin. Oncol.202219638540110.1038/s41571‑022‑00610‑835277694
    [Google Scholar]
  75. LiS. RenJ. HouH. HanX. XuJ. DuanG. WangY. YangH. The association between stroke and COVID-19-related mortality: a systematic review and meta-analysis based on adjusted effect estimates.Neurol. Sci.20224374049405910.1007/s10072‑022‑06024‑935325320
    [Google Scholar]
  76. BirmanD. Investigation of the effects of COVID-19 on different organs of the body.Eurasian J. Chem. Med Petrol Research2023212436
    [Google Scholar]
  77. LipG.Y.H. GenaidyA. TranG. MarroquinP. EstesC. Incident atrial fibrillation and its risk prediction in patients developing COVID-19: A machine learning based algorithm approach.Eur. J. Intern. Med.202191535810.1016/j.ejim.2021.04.02334023150
    [Google Scholar]
  78. AgarwalS. MunirM.B. StavrakisS. PicciniJ.P. AsadZ.U.A. The impact of atrial fibrillation on outcomes in patients hospitalized with COVID-19.Eur. J. Intern. Med.202311112712910.1016/j.ejim.2023.01.01736710138
    [Google Scholar]
  79. OfferhausJ.A. JoostenL.P.T. van SmedenM. LinschotenM. BleijendaalH. TielemanR. WildeA.A.M. RuttenF.H. GeersingG.J. RemmeC.A. Sex- and age specific association of new-onset atrial fibrillation with in-hospital mortality in hospitalised COVID-19 patients.Int. J. Cardiol. Heart Vasc.20223910097010.1016/j.ijcha.2022.10097035136831
    [Google Scholar]
  80. WangL. HoangL. AtenK. AbualfoulM. CanelaV. PrathivadaS. VuM. ZhaoY. SidhuM. Mortality and major adverse cardiovascular events in hospitalized patients with atrial fibrillation with COVID-19.Am. J. Cardiol.2023189414810.1016/j.amjcard.2022.11.04036502570
    [Google Scholar]
  81. AydemirS. AksakalE. AydınyılmazF. GülcüO. Saraçİ. AydınS.Ş. DoğanR. LazoğluM. KalkanK. Does new onset and pre-existing atrial fibrillation predict mortality in COVID-19 patients?Egypt. Heart J.20227415310.1186/s43044‑022‑00291‑935796916
    [Google Scholar]
  82. LippiG. HenryB.M. Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19).Respir. Med.202016710594110.1016/j.rmed.2020.10594132421537
    [Google Scholar]
  83. MukherjeeS. PahanK. Is COVID-19 gender-sensitive?J. Neuroimmune Pharmacol.2021161384710.1007/s11481‑020‑09974‑z33405098
    [Google Scholar]
  84. PijlsB.G. JolaniS. AtherleyA. DerckxR.T. DijkstraJ.I.R. FranssenG.H.L. HendriksS. RichtersA. Venemans-JellemaA. ZalpuriS. ZeegersM.P. Demographic risk factors for COVID-19 infection, severity, ICU admission and death: a meta-analysis of 59 studies.BMJ Open2021111e04464010.1136/bmjopen‑2020‑04464033431495
    [Google Scholar]
  85. NagyÉ. CsehV. BarcsI. LudwigE. The impact of comorbidities and obesity on the severity and outcome of COVID-19 in hospitalized patients—A retrospective study in a hungarian hospital.Int. J. Environ. Res. Public Health2023202137210.3390/ijerph2002137236674133
    [Google Scholar]
  86. SinghR. RathoreS.S. KhanH. KaraleS. ChawlaY. IqbalK. BhurwalA. TekinA. JainN. MehraI. AnandS. ReddyS. SharmaN. SidhuG.S. PanagopoulosA. PattanV. KashyapR. BansalV. Association of obesity with COVID-19 severity and mortality: An updated systemic review, meta-analysis, and meta-regression.Front. Endocrinol. (Lausanne)20221378087210.3389/fendo.2022.78087235721716
    [Google Scholar]
  87. SawadogoW. TsegayeM. GizawA. AderaT. Overweight and obesity as risk factors for COVID-19-associated hospitalisations and death: systematic review and meta-analysis.BMJ Nutrition, Prevention & Health202251101810.1136/bmjnph‑2021‑00037535814718
    [Google Scholar]
  88. YatesT. SummerfieldA. RaziehC. BanerjeeA. ChudasamaY. DaviesM.J. GilliesC. IslamN. LawsonC. MirkesE. ZaccardiF. KhuntiK. NafilyanV. A population-based cohort study of obesity, ethnicity and COVID-19 mortality in 12.6 million adults in England.Nat. Commun.202213162410.1038/s41467‑022‑28248‑135110546
    [Google Scholar]
  89. KimS.R. NamS.H. KimY.R. Risk factors on the progression to clinical outcomes of COVID-19 patients in South Korea: Using national data.Int. J. Environ. Res. Public Health20201723884710.3390/ijerph1723884733260724
    [Google Scholar]
  90. BepoukaB. MayasiN. MandinaM. LongokoloM. OdioO. MangalaD. MbulaM. KayembeJ.M. SituakibanzaH. Risk factors for mortality in COVID-19 patients in sub-Saharan Africa: A systematic review and meta-analysis.PLoS One20221710e027600810.1371/journal.pone.027600836251715
    [Google Scholar]
  91. WargnyM. PotierL. GourdyP. PichelinM. AmadouC. BenhamouP.Y. BonnetJ.B. BordierL. BourronO. ChaumeilC. ChevalierN. DarmonP. DelenneB. DemarsyD. DumasM. DupuyO. Flaus-FurmaniukA. GautierJ.F. GuedjA.M. JeandidierN. LargerE. Le BerreJ.P. LungoM. MontanierN. MoulinP. PlatF. RigalleauV. RobertR. Seret-BéguéD. SérusclatP. SmatiS. ThébautJ.F. TramuntB. VatierC. VelayoudomF.L. VergèsB. WiniszewskiP. ZabulonA. GourraudP.A. RousselR. CariouB. HadjadjS. CORONADO investigators Predictors of hospital discharge and mortality in patients with diabetes and COVID-19: updated results from the nationwide CORONADO study.Diabetologia202164477879410.1007/s00125‑020‑05351‑w33599800
    [Google Scholar]
  92. Le GuenC.L. MuirK.C. SimonsM. CoffmanD.L. SoansR.S. The impact of smoking status and smoking-related comorbidities on coronavirus disease 2019 patient outcomes: A causal mediation analysis.Nicotine Tob. Res.202325233133810.1093/ntr/ntac19335952390
    [Google Scholar]
  93. RazjouyanJ. HelmerD.A. LynchK.E. HananiaN.A. KlotmanP.E. SharafkhanehA. AmosC.I. Smoking Status and Factors associated with COVID-19 In-Hospital Mortality among US Veterans.Nicotine Tob. Res.202224578579310.1093/ntr/ntab22334693967
    [Google Scholar]
  94. PoudelR. DanielsL.B. DeFilippisA.P. HamburgN.M. KhanY. KeithR.J. KumarR.S. StrokesA.C. RobertsonR.M. BhatnagarA. Smoking is associated with increased risk of cardiovascular events, disease severity, and mortality among patients hospitalized for SARS-CoV-2 infections.PLoS One2022177e027076310.1371/journal.pone.027076335839264
    [Google Scholar]
  95. PatanavanichR. SiripoonT. AmponnavaratS. GlantzS.A. Active smokers are at higher risk of COVID-19 death: A systematic review and meta-analysis.Nicotine Tob. Res.202325217718410.1093/ntr/ntac08535363877
    [Google Scholar]
  96. SongC. LiZ. LiC. HuangM. LiuJ. FangQ. CaoZ. ZhangL. GaoP. NieW. LuoX. KangJ. XieS. LyuJ. ZhuX. SARS-CoV-2: The monster causes COVID-19.Front. Cell. Infect. Microbiol.20221283575010.3389/fcimb.2022.83575035211423
    [Google Scholar]
  97. KimD.H. ParkH.C. ChoA. KimJ. YunK. KimJ. LeeY.K. Age-adjusted Charlson comorbidity index score is the best predictor for severe clinical outcome in the hospitalized patients with COVID-19 infection.Medicine (Baltimore)202110018e2590010.1097/MD.000000000002590033951004
    [Google Scholar]
  98. AlizadehsaniR. Alizadeh SaniZ. BehjatiM. RoshanzamirZ. HussainS. AbediniN. HasanzadehF. KhosraviA. ShoeibiA. RoshanzamirM. MoradnejadP. NahavandiS. KhozeimehF. ZareA. PanahiazarM. AcharyaU.R. IslamS.M.S. Risk factors prediction, clinical outcomes, and mortality in COVID‐19 patients.J. Med. Virol.20219342307232010.1002/jmv.2669933247599
    [Google Scholar]
  99. SeidS. AdaneH. MeketeG. Patterns of presentation, prevalence and associated factors of mortality in ICU among adult patients during the pandemic of COVID 19: A retrospective cross-sectional study.Ann. Med. Surg. (Lond.)20227710361810.1016/j.amsu.2022.10361835441008
    [Google Scholar]
  100. ChoronR.L. ButtsC.A. BargoudC. KrumreiN.J. TeichmanA.L. SchroederM.E. Bover ManderskiM.T. CaiJ. SongC. RodricksM.B. LissauerM. GuptaR. Fever in the ICU: A predictor of mortality in mechanically ventilated COVID-19 patients.J. Intensive Care Med.202136448449310.1177/088506662097962233317374
    [Google Scholar]
  101. LuW. YuS. LiuH. SuoL. TangK. HuJ. ShiY. HuK. Survival analysis and risk factors in COVID-19 patients.Disaster Med. Public Health Prep.20221651916192110.1017/dmp.2021.8233762058
    [Google Scholar]
  102. RahmanA. SathiN.J. Risk factors of the severity of COVID‐19: A meta‐analysis.Int. J. Clin. Pract.2021757e1391610.1111/ijcp.1391633372407
    [Google Scholar]
  103. BannayA. ChaignotC. BlotièreP.O. BassonM. WeillA. RicordeauP. AllaF. The best use of the charlson comorbidity index with electronic health care database to predict mortality.Med. Care201654218819410.1097/MLR.000000000000047126683778
    [Google Scholar]
  104. ComogluS. KantA. Does the Charlson comorbidity index help predict the risk of death in COVID-19 patients?North. Clin. Istanb.20229211712110.14744/nci.2022.3334935582508
    [Google Scholar]
  105. Argun BarışS. BoyaciH. AkhanS. MutluB. DenizM. BaşyiğitI. Charlson comorbidity index in predicting poor clinical outcomes and mortality in patients with COVID-19.Turk. Thorac. J.202223214515310.5152/TurkThoracJ.2022.2107635404247
    [Google Scholar]
  106. VarolY. HakogluB. Kadri CirakA. PolatG. KomurcuogluB. AkkolB. AtasoyC. BayramicE. BalciG. AtamanS. ErminS. YalnizE. COVID Study Group The impact of charlson comorbidity index on mortality from SARS‐CoV‐2 virus infection and A novel COVID‐19 mortality index: CoLACD.Int. J. Clin. Pract.2021754e1385810.1111/ijcp.1385833237615
    [Google Scholar]
  107. GrayD.P. FreemanG. JohnsC. RolandM. Covid 19: a fork in the road for general practice.BMJ2020370m370910.1136/bmj.m370932988832
    [Google Scholar]
  108. NaughtonS.X. RavalU. PasinettiG.M. Potential novel role of COVID-19 in Alzheimer’s disease and preventative mitigation strategies.J. Alzheimers Dis.2020761212510.3233/JAD‑20053732538855
    [Google Scholar]
  109. SecnikJ. EriksdotterM. XuH. AnnetorpM. RytarowskiA. JohnellK. HäggS. ReligaD. SweGeroCOVID Project Dementia and psychotropic medications are associated with significantly higher mortality in geriatric patients hospitalized with COVID-19: data from the StockholmGeroCovid project.Alzheimers Res. Ther.2023151510.1186/s13195‑022‑01154‑w36609457
    [Google Scholar]
  110. LiuN. SunJ. WangX. ZhaoM. HuangQ. LiH. The impact of dementia on the clinical outcome of COVID-19: A systematic review and meta-analysis.J. Alzheimers Dis.20207841775178210.3233/JAD‑20101633285638
    [Google Scholar]
  111. TahiraA.C. Verjovski-AlmeidaS. FerreiraS.T. Dementia is an age‐independent risk factor for severity and death in COVID‐19 inpatients.Alzheimers Dement.202117111818183110.1002/alz.1235233881211
    [Google Scholar]
  112. PisaturoM. CalòF. RussoA. CamaioniC. GiacconeA. PincheraB. GentileI. SimeoneF. IodiceA. MaggiP. CoppolaN. Dementia as risk factor for severe coronavirus disease 2019: A case-control study.Front. Aging Neurosci.20211369818410.3389/fnagi.2021.69818434267649
    [Google Scholar]
  113. SaragihI.D. SaragihI.S. BatubaraS.O. LinC.J. Dementia as a mortality predictor among older adults with COVID-19: A systematic review and meta-analysis of observational study.Geriatr. Nurs.20214251230123910.1016/j.gerinurse.2021.03.00733824009
    [Google Scholar]
  114. HelmsJ. CombesA. AissaouiN. Cardiac injury in COVID-19.Intensive Care Med.202248111111310.1007/s00134‑021‑06555‑334727214
    [Google Scholar]
  115. SzarpakL. MierzejewskaM. JurekJ. KochanowskaA. GaseckaA. TruszewskiZ. PrucM. BlekN. RafiqueZ. FilipiakK.J. DenegriA. JaguszewskiM.J. Effect of coronary artery disease on COVID-19—Prognosis and risk assessment: A systematic review and meta-analysis.Biology (Basel)202211222110.3390/biology1102022135205088
    [Google Scholar]
  116. AngeliF. MarazzatoJ. VerdecchiaP. BalestrinoA. BruschiC. CerianaP. ChiovatoL. Dalla VecchiaL.A. De PontiR. FanfullaF. La RovereM.T. PeregoF. ScalviniS. SpanevelloA. TraversiE. ViscaD. VitaccaM. BachettiT. Joint effect of heart failure and coronary artery disease on the risk of death during hospitalization for COVID-19.Eur. J. Intern. Med.202189818610.1016/j.ejim.2021.04.00733933339
    [Google Scholar]
  117. SzarpakL. JaguszewskiM.J. PrucM. RafiqueZ. Myocardial injury: a future challenge for long-COVID-19 complications.Eur. Heart J. Qual. Care Clin. Outcomes20217661810.1093/ehjqcco/qcab06734549296
    [Google Scholar]
  118. TutsoyO. KoçG.G. Deep self-supervised machine learning algorithms with a novel feature elimination and selection approaches for blood test-based multi-dimensional health risks classification.BMC Bioinformatics202425110310.1186/s12859‑024‑05729‑238459463
    [Google Scholar]
  119. TutsoyO. Graph theory based large-scale machine learning with multi-dimensional constrained optimization approaches for exact epidemiological modeling of pandemic diseases.IEEE Trans. Pattern Anal. Mach. Intell.20234589836984510.1109/TPAMI.2023.325642137028303
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936306893240720192301
Loading
/content/journals/cbio/10.2174/0115748936306893240720192301
Loading

Data & Media loading...

Supplements

Supplementary Table : Feature vector of samples from the original dataset; Supplementary Table : Feature ranking results obtained using LASSO, LightGBM, MCFS, mRMR, RF, CATBoost, and XGBoost; Supplementary Table : Performance of IFS with different classification algorithms; Supplementary Table . Intersection of essential feature subsets extracted from LASSO, LightGBM, MCFS, RF, CATBoost, and XGBoost feature lists. The features occurring in 7, 6, 5, 4, 3, 2, and 1 subsets are presented in Supplementary Table . Classification rules generated by the best DT model.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test