Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Introduction

Cancer driver genes are genes responsible for cancer genesis; thus, identifying cancer-related genes is crucial in fostering cancer treatment. The accuracy in identifying cancer driver genes within the vast pool of normal passenger genes directly influences the efficacy of treatment approaches.

Objective

This research aimed to effectively identify cancer driver genes using the List-based Simulated Annealing (LBSA) optimization technique.

Methods

The proposed model (LBSA-DRIVER) harnesses a list-based simulated annealing algorithm within a bipartite network to pinpoint cancer driver genes. The process begins with creating a bipartite graph that integrates gene mutations and expression data from carefully chosen datasets. The LBSA algorithm is then applied to the generated graph to identify and rank the genes, drawing insights from a biological interaction network.

Results

Following the algorithm's development, rigorous experimental analyses have been conducted using four benchmark datasets from The Cancer Genome Atlas (TCGA) database. The datasets used were the Breast Cancer dataset (BRCA), Prostate Adenocarcinoma dataset (PRAD), Ovarian cancer dataset (OV), and Glioblastoma Multiforme dataset (GBM).

Conclusion

Our findings, including precision, recall, F-score, and accuracy metrics, provide strong evidence of the effectiveness of the proposed model in identifying driver genes.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936302984240604061302
2024-07-12
2025-04-09
Loading full text...

Full text loading...

References

  1. About Cancer Info, Your Guide to Cancer, U.SNational Institute of Health. National Cancer Institute, May 21, 2022.Available from: https://www.cancer.gov/about-cancer
  2. Cancer Genome Atlas Research NetworkComprehensive genomic characterization defines human glioblastoma genes and core pathways.Nature200845572161061106810.1038/nature0738518772890
    [Google Scholar]
  3. LawrenceM.S. StojanovP. PolakP. KryukovG.V. CibulskisK. SivachenkoA. CarterS.L. StewartC. MermelC.H. RobertsS.A. KiezunA. HammermanP.S. McKennaA. DrierY. ZouL. RamosA.H. PughT.J. StranskyN. HelmanE. KimJ. SougnezC. AmbrogioL. NickersonE. SheflerE. CortésM.L. AuclairD. SaksenaG. VoetD. NobleM. DiCaraD. LinP. LichtensteinL. HeimanD.I. FennellT. ImielinskiM. HernandezB. HodisE. BacaS. DulakA.M. LohrJ. LandauD.A. WuC.J. Melendez-ZajglaJ. Hidalgo-MirandaA. KorenA. McCarrollS.A. MoraJ. LeeR.S. CromptonB. OnofrioR. ParkinM. WincklerW. ArdlieK. GabrielS.B. RobertsC.W.M. BiegelJ.A. StegmaierK. BassA.J. GarrawayL.A. MeyersonM. GolubT.R. GordeninD.A. SunyaevS. LanderE.S. GetzG. Mutational heterogeneity in cancer and the search for new cancer-associated genes.Nature2013499745721421810.1038/nature1221323770567
    [Google Scholar]
  4. DeesN.D. ZhangQ. KandothC. WendlM.C. SchierdingW. KoboldtD.C. MooneyT.B. CallawayM.B. DoolingD. MardisE.R. WilsonR.K. DingL. MuSiC: Identifying mutational significance in cancer genomes.Genome Res.20122281589159810.1101/gr.134635.11122759861
    [Google Scholar]
  5. TianR. BasuM.K. CapriottiE. ContrastRank: A new method for ranking putative cancer driver genes and classification of tumor samples.Bioinformatics20143017i572i57810.1093/bioinformatics/btu46625161249
    [Google Scholar]
  6. VandinF. UpfalE. RaphaelB.J. Algorithms for detecting significantly mutated pathways in cancer.J. Comput. Biol.201118350752210.1089/cmb.2010.026521385051
    [Google Scholar]
  7. BashashatiA. HaffariG. DingJ. HaG. LuiK. RosnerJ. HuntsmanD.G. CaldasC. AparicioS.A. ShahS.P. DriverNet: Uncovering the impact of somatic driver mutations on transcriptional networks in cancer.Genome Biol.20121312R12410.1186/gb‑2012‑13‑12‑r12423383675
    [Google Scholar]
  8. Macías-GarcíaL. Luna-RomeraJ.M. García-GutiérrezJ. Martínez-BallesterosM. Riquelme-SantosJ.C. González-CámporaR. A study of the suitability of autoencoders for preprocessing data in breast cancer experimentation.J. Biomed. Inform.201772334410.1016/j.jbi.2017.06.02028663073
    [Google Scholar]
  9. WodarzD. NewellA.C. KomarovaN.L. Passenger mutations can accelerate tumour suppressor gene inactivation in cancer evolution.J. R. Soc. Interface2018151432017096710.1098/rsif.2017.096729875280
    [Google Scholar]
  10. KumarS. WarrellJ. LiS. McGillivrayP.D. MeyersonW. SalichosL. HarmanciA. Martinez-FundichelyA. ChanC.W.Y. NielsenM.M. LochovskyL. ZhangY. LiX. LouS. PedersenJ.S. HerrmannC. GetzG. KhuranaE. GersteinM.B. Passenger mutations in more than 2,500 cancer genomes: Overall molecular functional impact and consequences.Cell20201805915927.e1610.1016/j.cell.2020.01.03232084333
    [Google Scholar]
  11. TangZ. LiuX. LiZ. ZhangT. YangB. SuJ. SongQ. SpaRx: Elucidate single-cell spatial heterogeneity of drug responses for personalized treatment.Brief. Bioinform.2023246bbad33810.1093/bib/bbad33837798249
    [Google Scholar]
  12. TangZ. LiZ. HouT. ZhangT. YangB. SuJ. SongQ. SiGra: Single-cell spatial elucidation through an image-augmented graph transformer.Nat. Commun.2023141561810.1038/s41467‑023‑41437‑w37699885
    [Google Scholar]
  13. JiangL. JiangC. YuX. FuR. JinS. LiuX. DeepTTA: A transformer-based model for predicting cancer drug response.Brief. Bioinform.2022233bbac10010.1093/bib/bbac10035348595
    [Google Scholar]
  14. GuoX. LuL. YaoY. GaoL. Mining disease-associated genes based on heterogeneous graph transformer.2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),2023, pp. 528-533.10.1109/BIBM58861.2023.10385818
    [Google Scholar]
  15. ChenS. YangS. WangP. XueL. Two-stage penalized algorithms via integrating prior information improve gene selection from omics data.Physica A202362812916410.1016/j.physa.2023.129164
    [Google Scholar]
  16. ChengF. ZhaoJ. ZhaoZ. Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes.Brief. Bioinform.201617464265610.1093/bib/bbv06826307061
    [Google Scholar]
  17. YangS. ChenS. WangP. ChenA. TianT. Tsplasso: A two-stage prior lasso algorithm for gene selection using omics data.IEEE J. Biomed. Health Inform.202310.1109/JBHI.2023.332648537871092
    [Google Scholar]
  18. WuG. FengX. SteinL. A human functional protein interaction network and its application to cancer data analysis.Genome Biol.2010115R5310.1186/gb‑2010‑11‑5‑r5320482850
    [Google Scholar]
  19. cBioPortal for cancer genomics.Available from: http://www.cbioportal.org (Access time: 24th May 2022).
  20. TalbiE.G. MunteanT. Hill-climbing, simulated annealing and genetic algorithms: a comparative study and application to the mapping problem.Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences19932565573IEEE.10.1109/HICSS.1993.284069
    [Google Scholar]
  21. MetropolisN. RosenbluthA.W. RosenbluthM.N. TellerA.H. TellerE. Equation of state calculations by fast computing machines.J. Chem. Phys.19532161087109210.1063/1.1699114
    [Google Scholar]
  22. e OliveiraH.A.Jr PetragliaA. Solving nonlinear systems of functional equations with fuzzy adaptive simulated annealing.Appl. Soft Comput.201313114349435710.1016/j.asoc.2013.06.018
    [Google Scholar]
  23. OliveiraH.Jr PetragliaA. Establishing Nash equilibria of strategic games: A multistart Fuzzy Adaptive Simulated Annealing approach.Appl. Soft Comput.20141918819710.1016/j.asoc.2014.02.013
    [Google Scholar]
  24. ZhanS. LinJ. ZhangZ. ZhongY. List-based simulated annealing algorithm for traveling salesman problem.Comput. Intell. Neurosci.2016201611210.1155/2016/171263027034650
    [Google Scholar]
  25. LeeD.S. VassiliadisV.S. ParkJ.M. List-based threshold accepting algorithm for zero-wait scheduling of multiproduct batch plants.Ind. Eng. Chem. Res.200241256579658810.1021/ie010570n
    [Google Scholar]
  26. NikolakopoulosA. SarimveisH. A threshold accepting heuristic with intense local search for the solution of special instances of the traveling salesman problem.Eur. J. Oper. Res.200717731911192910.1016/j.ejor.2005.12.010
    [Google Scholar]
  27. WijesooriyaK. JadaanS.A. PereraK.L. KaurT. ZiemannM. Urgent need for consistent standards in functional enrichment analysis.PLOS Comput. Biol.2022183e100993510.1371/journal.pcbi.100993535263338
    [Google Scholar]
  28. The Gene Ontology Resource (GOR) Latest Release: 2022-05-16.Available from: http://geneontology.org
  29. NCG7.0. (2022, May)Retrieved from the Network of Cancer Genes and healthy drivers.Available from: ncg.kcl.ac.uk/old_versions.php
  30. JuX. KatiyarS. WangC. LiuM. JiaoX. LiS. ZhouJ. TurnerJ. LisantiM.P. RussellR.G. MuellerS.C. OjeifoJ. ChenW.S. HayN. PestellR.G. Akt1 governs breast cancer progression in vivo.Proc. Natl. Acad. Sci.2007104187438744310.1073/pnas.060587410417460049
    [Google Scholar]
  31. LiuH. RadiskyD.C. NelsonC.M. ZhangH. FataJ.E. RothR.A. BissellM.J. Mechanism of Akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2.Proc. Natl. Acad. Sci.2006103114134413910.1073/pnas.051134210316537497
    [Google Scholar]
  32. DengL. ZhuX. SunY. WangJ. ZhongX. LiJ. HuM. ZhengH. Prevalence and prognostic role of PIK3CA/AKT1 mutations in Chinese breast cancer patients.Cancer Res. Treat.201951112814010.4143/crt.2017.59829540052
    [Google Scholar]
  33. BokhariY. AlhareeriA. ArodzT. QuaDMutNetEx: A method for detecting cancer driver genes with low mutation frequency.BMC Bioinformatics202021112210.1186/s12859‑020‑3449‑232293263
    [Google Scholar]
  34. XiJ. WangM. LiA. Discovering potential driver genes through an integrated model of somatic mutation profiles and gene functional information.Mol. Biosyst.201713102135214410.1039/C7MB00303J28825429
    [Google Scholar]
  35. YangL. ChenR. MelendyT. GoodisonS. SunY. Identifying significantly perturbed subnetworks in cancer using multiple protein–protein interaction networks.Cancers20231516409010.3390/cancers1516409037627118
    [Google Scholar]
  36. BesharatniaF. TalebpourA. AliakbaryS. An improved grey wolves optimization algorithm for dynamic community detection and data clustering.Appl. Artif. Intell.2022361201200010.1080/08839514.2021.2012000
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936302984240604061302
Loading
/content/journals/cbio/10.2174/0115748936302984240604061302
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test