Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Inflammatory Bowel Disease (IBD), encompassing ulcerative colitis and Crohn’s disease, affects millions worldwide. Characterized by a complex interplay of genetic, microbial, and environmental factors, IBD challenges conventional treatment approaches, necessitating precision medicine. This paper reviews the role of bioinformatics in leveraging transcriptional data for novel IBD diagnostics and therapeutics. It highlights the genomic landscape of IBD, focusing on genetic factors and insights from genome-wide association studies. The interrelation between the gut microbiome and host transcriptional responses in IBD is examined, emphasizing the use of bioinformatics tools in deciphering these interactions. Our study synthesizes developments in transcriptomics and proteomics, revealing aberrant gene and protein expression patterns linked to IBD pathogenesis. We advocate for the integration of multi-omics data, underscoring the complexity and necessity of bioinformatics in interpreting these datasets. This approach paves the way for personalized treatment strategies, improved disease prognosis, and enhanced patient care. The insights provided offer a comprehensive overview of IBD, highlighting bioinformatics as key in advancing personalized healthcare in IBD management.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936302814240729062857
2024-08-08
2025-04-09
Loading full text...

Full text loading...

References

  1. LiJ. WeiZ. HakonarsonH. Application of computational methods in genetic study of inflammatory bowel disease.World J. Gastroenterol.201622394996010.3748/wjg.v22.i3.949 26811639
    [Google Scholar]
  2. SegalJ.P. MullishB.H. QuraishiM.N. The application of omics techniques to understand the role of the gut microbiota in inflammatory bowel disease.Therap. Adv. Gastroenterol.20191210.1177/1756284818822250 30719076
    [Google Scholar]
  3. NgS.C. ShiH.Y. HamidiN. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies.Lancet2017390101142769277810.1016/S0140‑6736(17)32448‑0 29050646
    [Google Scholar]
  4. TanakaM. RiddellR.H. SaitoH. SomaY. HidakaH. KudoH. Morphologic criteria applicable to biopsy specimens for effective distinction of inflammatory bowel disease from other forms of colitis and of Crohn’s disease from ulcerative colitis.Scand. J. Gastroenterol.1999341556710.1080/00365529950172844 10048734
    [Google Scholar]
  5. PlevyS. SilverbergM.S. LocktonS. Combined serological, genetic, and inflammatory markers differentiate non-IBD, Crohn’s disease, and ulcerative colitis patients.Inflamm. Bowel Dis.20131961139114810.1097/MIB.0b013e318280b19e 23518807
    [Google Scholar]
  6. HanauerS.B. Inflammatory bowel disease: Epidemiology, pathogenesis, and therapeutic opportunities.Inflamm. Bowel Dis.200612Suppl. 1S3S910.1097/01.MIB.0000195385.19268.68 16378007
    [Google Scholar]
  7. BridgerS. LeeJ.C.W. BjarnasonI. JonesJ.E.L. MacphersonA.J. In siblings with similar genetic susceptibility for inflammatory bowel disease, smokers tend to develop Crohn’s disease and non-smokers develop ulcerative colitis.Gut2002511212510.1136/gut.51.1.21 12077086
    [Google Scholar]
  8. ClarkP.M. DawanyN. DampierW. ByersS.W. PestellR.G. TozerenA. Bioinformatics analysis reveals transcriptome and microRNA signatures and drug repositioning targets for IBD and other autoimmune diseases.Inflamm. Bowel Dis.201218122315233310.1002/ibd.22958 22488912
    [Google Scholar]
  9. YuY.R. RodriguezJ.R. Clinical presentation of Crohn’s, ulcerative colitis, and indeterminate colitis: Symptoms, extraintestinal manifestations, and disease phenotypes.Semin. Pediatr. Surg.201726634935510.1053/j.sempedsurg.2017.10.003 29126502
    [Google Scholar]
  10. Uniken VenemaW.T.C. VoskuilM.D. DijkstraG. WeersmaR.K. FestenE.A.M. The genetic background of inflammatory bowel disease: From correlation to causality.J. Pathol.2017241214615810.1002/path.4817 27785786
    [Google Scholar]
  11. KönigI.R. FuchsO. HansenG. von MutiusE. KoppM.V. What is precision medicine?Eur. Respir. J.2017504170039110.1183/13993003.00391‑2017 29051268
    [Google Scholar]
  12. SisodiyaS.M. Precision medicine and therapies of the future.Epilepsia202162S2Suppl. 2S90S10510.1111/epi.16539 32776321
    [Google Scholar]
  13. NaithaniN. SinhaS. MisraP. VasudevanB. SahuR. Precision medicine: Concept and tools.Med. J. Armed Forces India202177324925710.1016/j.mjafi.2021.06.021 34305276
    [Google Scholar]
  14. CleynenI. BoucherG. JostinsL. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: A genetic association study.Lancet20163871001415616710.1016/S0140‑6736(15)00465‑1 26490195
    [Google Scholar]
  15. BoyapatiR.K. KallaR. SatsangiJ. HoG. Biomarkers in search of precision medicine in IBD.Am. J. Gastroenterol.2016111121682169010.1038/ajg.2016.441 27670602
    [Google Scholar]
  16. AshtonJ.J. MossottoE. EnnisS. BeattieR.M. Personalising medicine in inflammatory bowel disease—current and future perspectives.Transl. Pediatr.201981566910.21037/tp.2018.12.03 30881899
    [Google Scholar]
  17. AhmadH.A. EastJ.E. PanaccioneR. Artificial intelligence in inflammatory bowel disease: Implications for clinical practice and future directions.Intest. Res.202321328329410.5217/ir.2023.00020 37075809
    [Google Scholar]
  18. DiaconuC. StateM. BirligeaM. The role of artificial intelligence in monitoring inflammatory bowel disease—the future is now.Diagnostics (Basel)202313473510.3390/diagnostics13040735 36832222
    [Google Scholar]
  19. KyrochristosI.D. RoukosD.H. Comprehensive intra-individual genomic and transcriptional heterogeneity: Evidence-based Colorectal Cancer Precision Medicine.Cancer Treat. Rev.20198010189410.1016/j.ctrv.2019.101894 31518831
    [Google Scholar]
  20. KrishnanV.S. KõksS. Transcriptional basis of psoriasis from large scale gene expression studies: The importance of moving towards a precision medicine approach.Int. J. Mol. Sci.20222311613010.3390/ijms23116130 35682804
    [Google Scholar]
  21. De LangeKM Understanding inflammatory bowel disease using high-throughput sequencing2017
    [Google Scholar]
  22. OliveraP. DaneseS. JayN. NatoliG. Peyrin-BirouletL. Big data in IBD: A look into the future.Nat. Rev. Gastroenterol. Hepatol.201916531232110.1038/s41575‑019‑0102‑5 30659247
    [Google Scholar]
  23. CorridoniD. ChapmanT. AntanaviciuteA. SatsangiJ. SimmonsA. Inflammatory bowel disease through the lens of single-cell RNA-seq technologies.Inflamm. Bowel Dis.202026111658166810.1093/ibd/izaa089 32386055
    [Google Scholar]
  24. BorrenN.Z. AnanthakrishnanA.N. Precision medicine: How multiomics will shape the future of inflammatory bowel disease?Curr. Opin. Gastroenterol.202238438238710.1097/MOG.0000000000000847 35762697
    [Google Scholar]
  25. ZatorskiH. SałagaM. ZielińskaM. FichnaJ. Genetic factors in pathogenesis, course and treatment of inflammatory bowel diseases.Postepy Hig. Med. Dosw.20156933534410.5604/17322693.1145172 25811470
    [Google Scholar]
  26. HalmeL. Paavola-SakkiP. TurunenU. LappalainenM. FarkkilaM. KontulaK. Family and twin studies in inflammatory bowel disease.World J. Gastroenterol.200612233668367210.3748/wjg.v12.i23.3668 16773682
    [Google Scholar]
  27. SantosM.P.C. GomesC. TorresJ. Familial and ethnic risk in inflammatory bowel disease.Ann. Gastroenterol.20183111423 29333063
    [Google Scholar]
  28. HalfvarsonJ. Genetic epidemiology of inflammatory bowel disease, early twin and family studies. Molecular Genetics of Inflammatory Bowel Disease.ChamSpringer201910.1007/978‑3‑030‑28703‑0_2
    [Google Scholar]
  29. KhorB. GardetA. XavierR.J. Genetics and pathogenesis of inflammatory bowel disease.Nature2011474735130731710.1038/nature10209 21677747
    [Google Scholar]
  30. BastidaG. MínguezA. NosP. Moret-TatayI. Immunoepigenetic regulation of inflammatory bowel disease: Current insights into novel epigenetic modulations of the systemic immune response.Genes (Basel)202314355410.3390/genes14030554 36980826
    [Google Scholar]
  31. XuJ. XuH. YangM. New insights into the epigenetic regulation of inflammatory bowel disease.Front. Pharmacol.20221381365910.3389/fphar.2022.813659 35173618
    [Google Scholar]
  32. PetersL.A. PerrigoueJ. MorthaA. A functional genomics predictive network model identifies regulators of inflammatory bowel disease.Nat. Genet.201749101437144910.1038/ng.3947 28892060
    [Google Scholar]
  33. SilverbergM.S. ChoJ.H. RiouxJ.D. Ulcerative colitis–risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study.Nat. Genet.200941221622010.1038/ng.275 19122664
    [Google Scholar]
  34. Seyed TabibN.S. MadgwickM. SudhakarP. VerstocktB. KorcsmarosT. VermeireS. Big data in IBD: Big progress for clinical practice.Gut20206981520153210.1136/gutjnl‑2019‑320065 32111636
    [Google Scholar]
  35. LeeJ.C. ParkesM. Genome-wide association studies and Crohn’s disease.Brief. Funct. Genomics2011102717610.1093/bfgp/elr009 21436303
    [Google Scholar]
  36. ThompsonA.I. LeesC.W. Genetics of ulcerative colitis.Inflamm. Bowel Dis.201117383184810.1002/ibd.21375 21319274
    [Google Scholar]
  37. Mesbah-UddinM. ElangoR. BanaganapalliB. ShaikN.A. Al-AbbasiF.A. In-silico analysis of inflammatory bowel disease (IBD) GWAS loci to novel connections.PLoS One2015103e011942010.1371/journal.pone.0119420 25786114
    [Google Scholar]
  38. Ghafouri-FardS. EghtedarianR. TaheriM. The crucial role of non-coding RNAs in the pathophysiology of inflammatory bowel disease.Biomed. Pharmacother.202012911050710.1016/j.biopha.2020.110507 32768980
    [Google Scholar]
  39. BiancoA.M. GirardelliM. TommasiniA. Genetics of inflammatory bowel disease from multifactorial to monogenic forms.World J. Gastroenterol.20152143122961231010.3748/wjg.v21.i43.12296 26604638
    [Google Scholar]
  40. YounisN. ZarifR. MahfouzR. Inflammatory bowel disease: Between genetics and microbiota.Mol. Biol. Rep.20204743053306310.1007/s11033‑020‑05318‑5 32086718
    [Google Scholar]
  41. GirardelliM. BasaldellaF. PaoleraS.D. Genetic profile of patients with early onset inflammatory bowel disease.Gene2018645182910.1016/j.gene.2017.12.029 29248579
    [Google Scholar]
  42. RaoS. YaoY. BauerD.E. Editing GWAS: Experimental approaches to dissect and exploit disease-associated genetic variation.Genome Med.20211314110.1186/s13073‑021‑00857‑3 33691767
    [Google Scholar]
  43. JinL. ZhangB. LuoJ. Genomics, origin and selection signals of Loudi Cattle in Central Hunan.Biology (Basel)20221112177510.3390/biology11121775 36552284
    [Google Scholar]
  44. TruongV.Q. WoernerJ.A. CherlinT.A. Quality control procedures for genome‐wide association studies.Curr. Protoc.2022211e60310.1002/cpz1.603 36441943
    [Google Scholar]
  45. LippaK.A. Aristizabal-HenaoJ.J. BegerR.D. Reference materials for MS-based untargeted metabolomics and lipidomics: A review by the metabolomics quality assurance and quality control consortium (mQACC).Metabolomics20221842410.1007/s11306‑021‑01848‑6 35397018
    [Google Scholar]
  46. HufnagelDE Distinct teosinte hybrid zones and genomic architectures of hybridization2019
    [Google Scholar]
  47. PeraA. SostegniR. DapernoM. Genotype–phenotype relationship in inflammatory bowel disease.Eur. J. Intern. Med.200011420420910.1016/S0953‑6205(00)00092‑3 10967508
    [Google Scholar]
  48. LyonsP.A. PetersJ.E. AlbericiF. Genome-wide association study of eosinophilic granulomatosis with polyangiitis reveals genomic loci stratified by ANCA status.Nat. Commun.2019101512010.1038/s41467‑019‑12515‑9 31719529
    [Google Scholar]
  49. SchaidD.J. ChenW. LarsonN.B. From genome-wide associations to candidate causal variants by statistical fine-mapping.Nat. Rev. Genet.201819849150410.1038/s41576‑018‑0016‑z 29844615
    [Google Scholar]
  50. de GoedeO.M. NachunD.C. FerraroN.M. Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease.Cell2021184102633264810.1016/j.cell.2021.03.050
    [Google Scholar]
  51. YoungH. CoteA. HuckinsL.M. Integration with systems biology approaches and-omics data to characterize risk variation.Psychiatric Genomics.Cambridge, MassachusettsAcademic Press202210.1016/B978‑0‑12‑819602‑1.00017‑6
    [Google Scholar]
  52. FialkowskiA. BeasleyT.M. TiwariH.K. Multifactorial inheritance and complex diseases.Emery and Rimoin’s Principles and Practice of Medical Genetics and Genomics.Cambridge, MassachusettsAcademic Press201910.1016/B978‑0‑12‑812537‑3.00011‑1
    [Google Scholar]
  53. SchwartzentruberJA Using molecular QTLs to identify cell types and causal variants for complex traits2018
    [Google Scholar]
  54. MunzM. Identification of genetic risk factors predisposing to the inflammatory oral disease periodontitis.GermanyFreie Universitaet Berlin2019
    [Google Scholar]
  55. DonohueL.K. GuoM.G. ZhaoY. A cis-regulatory lexicon of DNA motif combinations mediating cell-type-specific gene regulation.Cell Genom202221110019110.1016/j.xgen.2022.100191
    [Google Scholar]
  56. Al-MustanjidM. MahmudS.M.H. RoyelM.R.I. Detection of molecular signatures and pathways shared in inflammatory bowel disease and colorectal cancer: A bioinformatics and systems biology approach.Genomics202011253416342610.1016/j.ygeno.2020.06.001 32535071
    [Google Scholar]
  57. GazouliM. DovrolisN. FrankeA. SpyrouG.M. SechiL.A. KoliosG. Differential genetic and functional background in inflammatory bowel disease phenotypes of a Greek population: A systems bioinformatics approach.Gut Pathog.20191113110.1186/s13099‑019‑0312‑y 31249629
    [Google Scholar]
  58. JneidR. Modules-based analysis of protein-protein networks for investigating the association between Ankylosing spondylitis and inflammatory bowel disease2017
    [Google Scholar]
  59. YueZ. SlominskiR. BhartiS. ChenJ.Y. PAGER Web APP: An interactive, online gene set and network interpretation tool for functional genomics.Front. Genet.20221382036110.3389/fgene.2022.820361 35495152
    [Google Scholar]
  60. NooriE. KazemiB. BandehpourM. ZaliH. KhalesiB. KhaliliS. Deciphering crucial genes in coeliac disease by bioinformatics analysis.Autoimmunity202053210211310.1080/08916934.2019.1698552 31809599
    [Google Scholar]
  61. ZhangX. LiL. ButcherJ. StintziA. FigeysD. Advancing functional and translational microbiome research using meta-omics approaches.Microbiome20197115410.1186/s40168‑019‑0767‑6 31810497
    [Google Scholar]
  62. GaoB. ChiL. ZhuY. An introduction to next generation sequencing bioinformatic analysis in gut microbiome studies.Biomolecules202111453010.3390/biom11040530 33918473
    [Google Scholar]
  63. MalhamM. LiljeB. HouenG. WintherK. AndersenP.S. JakobsenC. The microbiome reflects diagnosis and predicts disease severity in paediatric onset inflammatory bowel disease.Scand. J. Gastroenterol.201954896997510.1080/00365521.2019.1644368 31329473
    [Google Scholar]
  64. NormanJ.M. HandleyS.A. BaldridgeM.T. Disease-specific alterations in the enteric virome in inflammatory bowel disease.Cell2015160344746010.1016/j.cell.2015.01.002 25619688
    [Google Scholar]
  65. KnightsD. LassenK.G. XavierR.J. Advances in inflammatory bowel disease pathogenesis: Linking host genetics and the microbiome.Gut201362101505151010.1136/gutjnl‑2012‑303954 24037875
    [Google Scholar]
  66. PisaniA. RauschP. BangC. Dysbiosis in the gut microbiota in patients with inflammatory bowel disease during remission.Microbiol. Spectr.2022103e00616e0062210.1128/spectrum.00616‑22 35532243
    [Google Scholar]
  67. LeylabadloH.E. GhotaslouR. FeizabadiM.M. The critical role of Faecalibacterium prausnitzii in human health: An overview.Microb. Pathog.202014910434410.1016/j.micpath.2020.104344 32534182
    [Google Scholar]
  68. ManichanhC. BorruelN. CasellasF. GuarnerF. The gut microbiota in IBD.Nat. Rev. Gastroenterol. Hepatol.201291059960810.1038/nrgastro.2012.152 22907164
    [Google Scholar]
  69. NiuW. YangF. FuZ. DongY. ZhangZ. JuJ. The role of enteric dysbacteriosis and modulation of gut microbiota in the treatment of inflammatory bowel disease.Microb. Pathog.202216510538110.1016/j.micpath.2021.105381 34974123
    [Google Scholar]
  70. MartínR. Rios-CovianD. HuilletE. Faecalibacterium: A bacterial genus with promising human health applications.FEMS Microbiol. Rev.2023474fuad03910.1093/femsre/fuad039 37451743
    [Google Scholar]
  71. YangQ. LiangQ. BalakrishnanB. BelobrajdicD.P. FengQ.J. ZhangW. Role of dietary nutrients in the modulation of gut microbiota: A narrative review.Nutrients202012238110.3390/nu12020381 32023943
    [Google Scholar]
  72. LiuS. ZhaoW. LanP. MouX. The microbiome in inflammatory bowel diseases: From pathogenesis to therapy.Protein Cell202112533134510.1007/s13238‑020‑00745‑3 32601832
    [Google Scholar]
  73. BrusaferroA. CavalliE. FarinelliE. CozzaliR. PrincipiN. EspositoS. Gut dysbiosis and paediatric Crohn’s disease.J. Infect.20197811710.1016/j.jinf.2018.10.005 30336176
    [Google Scholar]
  74. NicholsR.G. DavenportE.R. The relationship between the gut microbiome and host gene expression: A review.Hum. Genet.2021140574776010.1007/s00439‑020‑02237‑0 33221945
    [Google Scholar]
  75. KnightsD. SilverbergM.S. WeersmaR.K. Complex host genetics influence the microbiome in inflammatory bowel disease.Genome Med.201461210710.1186/s13073‑014‑0107‑1 25587358
    [Google Scholar]
  76. RathE. HallerD. Intestinal epithelial cell metabolism at the interface of microbial dysbiosis and tissue injury.Mucosal Immunol.202215459560410.1038/s41385‑022‑00514‑x 35534699
    [Google Scholar]
  77. BartlettA. GullicksonR.G. SinghR. RoS. OmayeS.T. The link between oral and gut microbiota in inflammatory bowel disease and a synopsis of potential salivary biomarkers.Appl. Sci. (Basel)20201018642110.3390/app10186421
    [Google Scholar]
  78. CaoS. Cellular stress responses and gut microbiota in inflammatory bowel disease.Gastroenterol. Res. Pract.20182018719264610.1155/2018/7192646
    [Google Scholar]
  79. LiJ. JiY. ChenN. DaiL. DengH. Colitis-associated carcinogenesis: Crosstalk between tumors, immune cells and gut microbiota.Cell Biosci.202313119410.1186/s13578‑023‑01139‑8 37875976
    [Google Scholar]
  80. EhrentrautS.F. ColganS.P. Implications of protein post-translational modifications in IBD.Inflamm. Bowel Dis.20121871378138810.1002/ibd.22859 22223542
    [Google Scholar]
  81. BarbaraG. BarbaroM.R. FuschiD. Inflammatory and microbiota-related regulation of the intestinal epithelial barrier.Front. Nutr.2021871835610.3389/fnut.2021.718356 34589512
    [Google Scholar]
  82. SnoekS.A. VerstegeM.I. BoeckxstaensG.E. van den WijngaardR.M. de JongeW.J. The enteric nervous system as a regulator of intestinal epithelial barrier function in health and disease.Expert Rev. Gastroenterol. Hepatol.20104563765110.1586/egh.10.51 20932148
    [Google Scholar]
  83. Gutierrez LopezD.E. LashingerL.M. WeinstockG.M. BrayM.S. Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet.Cell Metab.202133587388710.1016/j.cmet.2021.03.015 33789092
    [Google Scholar]
  84. SomineniHK Biological insights from integrative genetic, epigenetic and microbial analysis of inflammatory bowel disease2019
    [Google Scholar]
  85. TataruC.A. DavidM.M. Decoding the language of microbiomes: Leveraging patterns in 16S public data using word-embedding techniques and applications in inflammatory bowel disease.bioRxiv201910.1101/748152
    [Google Scholar]
  86. LeggieriP.A. LiuY. HayesM. Integrating systems and synthetic biology to understand and engineer microbiomes.Annu. Rev. Biomed. Eng.202123116920110.1146/annurev‑bioeng‑082120‑022836 33781078
    [Google Scholar]
  87. SinghA. Falsifiable network modelsA Network-based approach to predict treatment efficacy in ulcerative colitis.Available From: https://munin.uit.no/handle/10037/27393?locale-attribute=en 2022
  88. MunozJ.E. BrubakerD.K. Latent interacting variable-effects modeling of gut microbiome multi-omics in inflammatory bowel disease.bioRxiv202210.1101/2022.07.08.499280
    [Google Scholar]
  89. TangM.S. BowcuttR. LeungJ.M. Integrated analysis of biopsies from inflammatory bowel disease patients identifies SAA1 as a link between mucosal microbes with TH17 and TH22 cells.Inflamm. Bowel Dis.20172391544155410.1097/MIB.0000000000001208 28806280
    [Google Scholar]
  90. GayathiriE. PrakashP. KumaravelP. Computational approaches for modeling and structural design of biological systems: A comprehensive review.Prog. Biophys. Mol. Biol.2023185173210.1016/j.pbiomolbio.2023.08.002 37821048
    [Google Scholar]
  91. Bassaganya-RieraJ. HontecillasR. AbediV. CarboA. PhilipsonC. HoopsS. Computational modeling. Computational Immunology: Models and Tools.Cambridge, MassachusettsAcademic Press201610.1016/B978‑0‑12‑803697‑6.00002‑3
    [Google Scholar]
  92. PriyaS. BurnsM.B. WardT. Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration.Nat. Microbiol.20227678079510.1038/s41564‑022‑01121‑z 35577971
    [Google Scholar]
  93. WangZ. GuoK. GaoP. Microbial and genetic-based framework identifies drug targets in inflammatory bowel disease.Theranostics202111157491750610.7150/thno.59196 34158863
    [Google Scholar]
  94. KangM. KoE. MershaT.B. A roadmap for multi-omics data integration using deep learning.Brief. Bioinform.2022231bbab45410.1093/bib/bbab454 34791014
    [Google Scholar]
  95. KhanF. RadovanovicA. GojoboriT. KaurM. IBDDB: A manually curated and text-mining-enhanced database of genes involved in inflammatory bowel disease.Database20212021baab02210.1093/database/baab022
    [Google Scholar]
  96. KhanF. In silico identification of transcription based biomarkers for early diagnosis of inflammatory bowel disease and predicting progression to colorectal cancer2022
    [Google Scholar]
  97. DemandtSLJ Investigating the role of aberrant gene regulation in inflammatory bowel disease to understand pathogenesis and help predict relapse2017
    [Google Scholar]
  98. ChapmanC.G. PekowJ. The emerging role of miRNAs in inflammatory bowel disease: A review.Therap. Adv. Gastroenterol.20158142210.1177/1756283X14547360 25553076
    [Google Scholar]
  99. GisbertJ.P. ChaparroM. Clinical usefulness of proteomics in inflammatory bowel disease: A comprehensive review.J. Crohn’s Colitis201913337438410.1093/ecco‑jcc/jjy158 30307487
    [Google Scholar]
  100. ShamaA. SoniT. JawandaI.K. UpadhyayG. SharmaA. PrabhaV. The latest developments in using proteomic biomarkers from urine and serum for non-invasive disease diagnosis and prognosis.Biomark. Insights2023181177271923119021810.1177/11772719231190218 37528936
    [Google Scholar]
  101. MacklinA. KhanS. KislingerT. Recent advances in mass spectrometry based clinical proteomics: Applications to cancer research.Clin. Proteomics20201711710.1186/s12014‑020‑09283‑w 32489335
    [Google Scholar]
  102. SharmaS. Early stage diagnosis of colorectal cancer using a multi-variate blood-based test2022
    [Google Scholar]
  103. Baldan-MartinM. ChaparroM. GisbertJ.P. Tissue proteomic approaches to understand the pathogenesis of inflammatory bowel disease.Inflamm. Bowel Dis.20212781184120010.1093/ibd/izaa352 33529308
    [Google Scholar]
  104. StarrA.E. DeekeS.A. LiL. Proteomic and metaproteomic approaches to understand host–microbe interactions.Anal. Chem.20189018610910.1021/acs.analchem.7b04340 29061041
    [Google Scholar]
  105. KimJ.H. YooB.C. YangW.S. KimE. HongS. ChoJ.Y. The role of protein arginine methyltransferases in inflammatory responses.Mediators Inflamm.20162016402835310.1155/2016/4028353
    [Google Scholar]
  106. FabianO. BajerL. DrastichP. A current state of proteomics in adult and pediatric inflammatory bowel diseases: A systematic search and review.Int. J. Mol. Sci.20232411938610.3390/ijms24119386 37298338
    [Google Scholar]
  107. LongoS. ChieppaM. CossaL.G. New insights into inflammatory bowel diseases from proteomic and lipidomic studies.Proteomes2020831810.3390/proteomes8030018 32784952
    [Google Scholar]
  108. StylianouE. Recent advances in the etiopathogenesis of inflammatory bowel disease: The role of omics.Mol. Diagn. Ther.2018221112310.1007/s40291‑017‑0298‑4 28900867
    [Google Scholar]
  109. AlizadehM. Sampaio MouraN. SchledwitzA. PatilS.A. RavelJ. RaufmanJ.P. Big data in gastroenterology research.Int. J. Mol. Sci.2023243245810.3390/ijms24032458 36768780
    [Google Scholar]
  110. ManzoniC. KiaD.A. VandrovcovaJ. Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences.Brief. Bioinform.201819228630210.1093/bib/bbw114 27881428
    [Google Scholar]
  111. WangX. LiuZ. ZhangF. Integrative genomics reveals the polygenic basis of seedlessness in grapevine.bioRxiv202310.1101/2023.12.22.573032
    [Google Scholar]
  112. BorisV. VanessaV. Molecular systems biology approaches to investigate mechanisms of gut−brain communication in neurological diseases.Eur. J. Neurol.202330113622363210.1111/ene.15819 37038632
    [Google Scholar]
  113. DevlinJC Understanding immune variation through computational multi-omic approaches2021
    [Google Scholar]
  114. RevillaL. MayorgasA. CorralizaA.M. Multi-omic modelling of inflammatory bowel disease with regularized canonical correlation analysis.PLoS One2021162e024636710.1371/journal.pone.0246367 33556098
    [Google Scholar]
  115. DistefanoR. IlievaM. MadsenJ.H. UchidaS. CrohnD.B. Crohn DB: A web database for expression profiling of protein-coding and Long Non-Coding RNA genes in Crohn Disease.Computation (Basel)202311610510.3390/computation11060105
    [Google Scholar]
  116. ZhanC. ZhouZ. HuangY. Exploration of the shared gene signatures and molecular mechanisms between periodontitis and inflammatory bowel disease: Evidence from transcriptome data.Gastroenterol. Rep. (Oxf.)202211goad04110.1093/gastro/goad041 37456714
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936302814240729062857
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test