Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

Cancer has emerged as the “leading killer” of human health. Survival prediction is a crucial branch of cancer prognosis. It aims to estimate patients' survival risk based on their disease conditions. Accurate and efficient survival prediction is vital in cancer patients' treatment and clinical management, preventing unnecessary suffering and conserving precious medical resources. Deep learning has been extensively applied in cancer diagnosis, prognosis, and treatment management. The decreasing cost of next-generation sequencing, continuous development of related databases, and in-depth research on multimodal deep learning have provided opportunities for establishing more functionally rich and accurate survival prediction models.

Objective

The current area of cancer survival prediction still lacks a review of multimodal deep learning methods.

Methods

We conducted a statistical analysis of the relevant research on multimodal deep learning for cancer survival prediction. We first filtered keywords from 6 known relevant papers. Then, we searched PubMed and Google Scholar for relevant publications from 2018 to 2022 using “Multimodal”, “Deep Learning” and “Cancer Survival Prediction” as keywords. Then, we further searched the related publications through the backward and forward citation search. Subsequently, we conducted a detailed analysis and review of these studies based on their datasets and methods.

Results

We present a comprehensive systematic review of the multimodal deep learning research on cancer survival prediction from 2018 to 2022.

Conclusion

Multimodal deep learning has demonstrated powerful data aggregation capabilities and excellent performance in improving cancer survival prediction greatly. It has made a significant positive impact on facilitating the advancement of automated cancer diagnosis and precision oncology.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936289033240424071522
2024-05-30
2025-04-22
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. KishoreJ. GoelM.K. KhannaP. Understanding survival analysis: Kaplan-Meier estimate.Int. J. Ayurveda Res.20101427427810.4103/0974‑7788.7679421455458
    [Google Scholar]
  4. DudleyW.N. WickhamR. CoombsN. An introduction to survival statistics: Kaplan-Meier analysis.J. Adv. Pract. Oncol.2016719110010.6004/jadpro.2016.7.1.827713848
    [Google Scholar]
  5. ClarkT.G. BradburnM.J. LoveS.B. AltmanD.G. Survival analysis part I: Basic concepts and first analyses.Br. J. Cancer200389223223810.1038/sj.bjc.660111812865907
    [Google Scholar]
  6. BradburnM.J. ClarkT.G. LoveS.B. AltmanD.G. Survival analysis part II: Multivariate data analysis – An introduction to concepts and methods.Br. J. Cancer200389343143610.1038/sj.bjc.660111912888808
    [Google Scholar]
  7. KourouK. ExarchosT.P. ExarchosK.P. KaramouzisM.V. FotiadisD.I. Machine learning applications in cancer prognosis and prediction.Comput. Struct. Biotechnol. J.20151381710.1016/j.csbj.2014.11.00525750696
    [Google Scholar]
  8. GoliS. MahjubH. FaradmalJ. MashayekhiH. SoltanianA.R. Survival prediction and feature selection in patients with breast cancer using support vector regression.Comput. Math. Methods Med.2016201611210.1155/2016/215798427882074
    [Google Scholar]
  9. ZhuX. YaoJ. LuoX. XiaoG. XieY. GazdarA. Lung cancer survival prediction from pathological images and genetic data — An integration study.2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13-16 April 2016, pp. 1173-1176.
    [Google Scholar]
  10. RathoreF.A. KhanH.S. AliH.M. ObayyaM. RasheedS. HussainL. KazmiZ.H. NourM.K. MohamedA. MotwakelA. Survival prediction of glioma patients from integrated radiology and pathology images using machine learning ensemble regression methods.Appl. Sci.202212201035710.3390/app122010357
    [Google Scholar]
  11. MihaylovI. NishevaM. VassilevD. Application of machine learning models for survival prognosis in breast cancer studies.Information20191039310.3390/info10030093
    [Google Scholar]
  12. XuX. ZhangY. ZouL. WangM. LiA. A gene signature for breast cancer prognosis using support vector machine.2012 5th International Conference on BioMedical Engineering and Informatics, Chongqing, China, 16-18 October 2012, pp. 928-931.10.1109/BMEI.2012.6513032
    [Google Scholar]
  13. MontazeriM. MontazeriM. MontazeriM. BeigzadehA. Machine learning models in breast cancer survival prediction.Technol. Health Care2016241314210.3233/THC‑15107126409558
    [Google Scholar]
  14. ChapfuwaP. LiC. MehtaN. CarinL. HenaoR. Survival cluster analysis.Proceedings of the ACM Conference on Health, Inference, and LearningNew York, NY, USAACM202010.1145/3368555.3384465
    [Google Scholar]
  15. OkagbueH.I. OguntundeP.E. AdamuP.I. AdejumoA.O. Unique clusters of patterns of breast cancer survivorship.Health Technol.202212236538410.1007/s12553‑021‑00637‑4
    [Google Scholar]
  16. ChingT. ZhuX. GarmireL.X. Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data.PLOS Comput. Biol.2018144e100607610.1371/journal.pcbi.100607629634719
    [Google Scholar]
  17. ZhuX. YaoJ. HuangJ. Deep convolutional neural network for survival analysis with pathological images.2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15-18 December 2016, pp. 544-547.10.1109/BIBM.2016.7822579
    [Google Scholar]
  18. LahatD. AdaliT. JuttenC. Multimodal data fusion: An overview of methods, challenges, and prospects.Proc IEEE Inst Electr Electron Eng 201510391449147710.1109/JPROC.2015.2460697
    [Google Scholar]
  19. TranK.A. KondrashovaO. BradleyA. WilliamsE.D. PearsonJ.V. WaddellN. Deep learning in cancer diagnosis, prognosis and treatment selection.Genome Med.202113115210.1186/s13073‑021‑00968‑x34579788
    [Google Scholar]
  20. TufailA.B. MaY.K. KaabarM.K.A. MartínezF. JunejoA.R. UllahI. KhanR. Deep learning in cancer diagnosis and prognosis prediction: A minireview on challenges, recent trends, and future directions.Comput. Math. Methods Med.2021202112810.1155/2021/902547034754327
    [Google Scholar]
  21. HuangS. YangJ. FongS. ZhaoQ. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges.Cancer Lett.2020471617110.1016/j.canlet.2019.12.00731830558
    [Google Scholar]
  22. KangM. KoE. MershaT.B. A roadmap for multi-omics data integration using deep learning.Brief. Bioinform.2022231bbab45410.1093/bib/bbab45434791014
    [Google Scholar]
  23. StahlschmidtS.R. UlfenborgB. SynnergrenJ. Multimodal deep learning for biomedical data fusion: A review.Brief. Bioinform.2022232bbab56910.1093/bib/bbab56935089332
    [Google Scholar]
  24. WangZ. LiR. WangM. LiA. GPDBN: Deep bilinear network integrating both genomic data and pathological images for breast cancer prognosis prediction.Bioinformatics202137182963297010.1093/bioinformatics/btab18533734318
    [Google Scholar]
  25. HuangC. ZhangA. XiaoG. Deep integrative analysis for survival prediction. In: Biocomputing 2018.WORLD SCIENTIFIC201810.1142/9789813235533_0032
    [Google Scholar]
  26. TanK. HuangW. LiuX. HuJ. DongS. A multi-modal fusion framework based on multi-task correlation learning for cancer prognosis prediction.Artif. Intell. Med.202212610226010226010.1016/j.artmed.2022.10226035346442
    [Google Scholar]
  27. HuangZ. ZhanX. XiangS. JohnsonT.S. HelmB. YuC.Y. ZhangJ. SalamaP. RizkallaM. HanZ. HuangK. SALMON: Survival analysis learning with multi-omics neural networks on breast cancer.Front. Genet.20191016610.3389/fgene.2019.0016630906311
    [Google Scholar]
  28. ChenR.J. LuM.Y. WangJ. WilliamsonD.F.K. RodigS.J. LindemanN.I. MahmoodF. Pathomic fusion: An integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis.IEEE Trans. Med. Imaging202241475777010.1109/TMI.2020.302138732881682
    [Google Scholar]
  29. LiR. WuX. LiA. WangM. HFBSurv: Hierarchical multimodal fusion with factorized bilinear models for cancer survival prediction.Bioinformatics20223892587259410.1093/bioinformatics/btac11335188177
    [Google Scholar]
  30. SharmaD. Deepali GargV.K. KashyapD. GoelN. A deep learning-based integrative model for survival time prediction of head and neck squamous cell carcinoma patients.Neural Comput. Appl.20223423213532136510.1007/s00521‑022‑07615‑5
    [Google Scholar]
  31. KalakotiY. YadavS. SundarD. SurvCNN: A discrete time-to-event cancer survival estimation framework using image representations of omics data.Cancers20211313310610.3390/cancers1313310634206288
    [Google Scholar]
  32. CheerlaA. GevaertO. Deep learning with multimodal representation for pancancer prognosis prediction.Bioinformatics20193514i446i45410.1093/bioinformatics/btz34231510656
    [Google Scholar]
  33. KarimM.R. WicaksonoG.G. CostaI. DeckerS. BeyanO. Prognostically relevant subtypes and survival prediction for breast cancer based on multimodal genomics data.IEEE Access2019713385013386410.1109/ACCESS.2019.2941796
    [Google Scholar]
  34. WangT.H. LeeC.Y. LeeT.Y. HuangH.D. HsuJ.B.K. ChangT.H. Biomarker identification through multiomics data analysis of prostate cancer prognostication using a deep learning model and similarity network fusion.Cancers20211311252810.3390/cancers1311252834064004
    [Google Scholar]
  35. XieG. DongC. KongY. ZhongJ. LiM. WangK. Group lasso regularized deep learning for cancer prognosis from multi-omics and clinical features.Genes201910324010.3390/genes1003024030901858
    [Google Scholar]
  36. TongL. MitchelJ. ChatlinK. WangM.D. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis.BMC Med. Inform. Decis. Mak.202020122510.1186/s12911‑020‑01225‑832933515
    [Google Scholar]
  37. WangC. GuoJ. ZhaoN. LiuY. LiuX. LiuG. GuoM. A cancer survival prediction method based on graph convolutional network.IEEE Trans. Nanobiosci.202019111712610.1109/TNB.2019.293639831443039
    [Google Scholar]
  38. MalikV. DuttaS. KalakotiY. SundarD. Multi-omics integration based predictive model for survival prediction of lung adenocarcinaoma. In: 2019 Grace Hopper Celebration India (GHCI).IEEE201910.1109/GHCI47972.2019.9071831
    [Google Scholar]
  39. Vale SilvaL.A. RohrK. Pan-cancer prognosis prediction using multimodal deep learning.2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)IEEE202010.1109/ISBI45749.2020.9098665
    [Google Scholar]
  40. Vale-SilvaL.A. RohrK. Long-term cancer survival prediction using multimodal deep learning.Sci. Rep.20211111350510.1038/s41598‑021‑92799‑434188098
    [Google Scholar]
  41. TakahashiS. AsadaK. TakasawaK. ShimoyamaR. SakaiA. BolatkanA. ShinkaiN. KobayashiK. KomatsuM. KanekoS. SeseJ. HamamotoR. Predicting deep learning based multi-omics parallel integration survival subtypes in lung cancer using reverse phase protein array data.Biomolecules20201010146010.3390/biom1010146033086649
    [Google Scholar]
  42. HiraM.T. RazzaqueM.A. AngioneC. ScrivensJ. SawanS. SarkerM. Integrated multi-omics analysis of ovarian cancer using variational autoencoders.Sci. Rep.2021111626510.1038/s41598‑021‑85285‑433737557
    [Google Scholar]
  43. WuX. FangQ. Stacked autoencoder based multi-omics data integration for cancer survival prediction.arXiv 2022
    [Google Scholar]
  44. TanK. HuangW. HuJ. DongS. A multi-omics supervised autoencoder for pan-cancer clinical outcome endpoints prediction.BMC Med. Inform. Decis. Mak.202020S3Suppl. 312910.1186/s12911‑020‑1114‑332646413
    [Google Scholar]
  45. ZhangJ.Z. XuW. HuP. Tightly integrated multiomics-based deep tensor survival model for time-to-event prediction.Bioinformatics202238123259326610.1093/bioinformatics/btac28635445698
    [Google Scholar]
  46. TongL. WuH. WangM.D. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer.Methods2021189748510.1016/j.ymeth.2020.07.00832763377
    [Google Scholar]
  47. ChenH. GaoM. ZhangY. LiangW. ZouX. Attention-based multi-NMF deep neural network with multimodality data for breast cancer prognosis model.BioMed Res. Int.2019201911110.1155/2019/952371931214619
    [Google Scholar]
  48. KhoshghalbvashF. GaoJ.X. Integrating heterogeneous datasets by using multimodal deep learning. In: Lecture Notes in Electrical Engineering.SingaporeSpringer Singapore2020279285
    [Google Scholar]
  49. GaoJ LyuT XiongF WangJ KeW LiZ Predicting the survival of cancer patients with multimodal graph neural network.IEEE/ACM Trans Comput Biol Bioinform.202219269970910.1109/TCBB.2021.3083566
    [Google Scholar]
  50. WuY. MaJ. HuangX. LingS.H. Weidong SuS. DeepMMSA: A novel multimodal deep learning method for non-small cell lung cancer survival analysis.2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 17-20 October 2021, pp. 1468-1472.10.1109/SMC52423.2021.9658891
    [Google Scholar]
  51. LaiY.H. ChenW.N. HsuT.C. LinC. TsaoY. WuS. Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning.Sci. Rep.2020101467910.1038/s41598‑020‑61588‑w32170141
    [Google Scholar]
  52. HanJ. XiaoN. YangW. LuoS. ZhaoJ. QiangY. ChaudharyS. ZhaoJ. MS-ResNet: Disease-specific survival prediction using longitudinal CT images and clinical data.Int. J. CARS20221761049105710.1007/s11548‑022‑02625‑z35445285
    [Google Scholar]
  53. NieD. LuJ. ZhangH. AdeliE. WangJ. YuZ. LiuL. WangQ. WuJ. ShenD. Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages.Sci. Rep.201991110310.1038/s41598‑018‑37387‑930705340
    [Google Scholar]
  54. TangZ. XuY. JinL. AibaidulaA. LuJ. JiaoZ. WuJ. ZhangH. ShenD. Deep learning of imaging phenotype and genotype for predicting overall survival time of glioblastoma patients.IEEE Trans. Med. Imaging20203962100210910.1109/TMI.2020.296431031905135
    [Google Scholar]
  55. YoonH.G. CheonW. JeongS.W. KimH.S. KimK. NamH. HanY. LimD.H. Multi-parametric deep learning model for prediction of overall survival after postoperative concurrent chemoradiotherapy in glioblastoma patients.Cancers2020128228410.3390/cancers1208228432823939
    [Google Scholar]
  56. WeiL. OwenD. RosenB. GuoX. CuneoK. LawrenceT.S. Ten HakenR. El NaqaI. A deep survival interpretable radiomics model of hepatocellular carcinoma patients.Phys. Med.20218229530510.1016/j.ejmp.2021.02.01333714190
    [Google Scholar]
  57. HuangB. SolleeJ. LuoY.H. ReddyA. ZhongZ. WuJ. MammarappallilJ. HealeyT. ChengG. AzzoliC. KorogodskyD. ZhangP. FengX. LiJ. YangL. JiaoZ. BaiH.X. Prediction of lung malignancy progression and survival with machine learning based on pre-treatment FDG-PET/CT.EBioMedicine20228210412710412710.1016/j.ebiom.2022.10412735810561
    [Google Scholar]
  58. GuB. MengM. BiL. KimJ. FengD.D. SongS. Prediction of 5-year progression-free survival in advanced nasopharyngeal carcinoma with pretreatment PET/CT using multi-modality deep learning-based radiomics.Front. Oncol.20221289935110.3389/fonc.2022.89935135965589
    [Google Scholar]
  59. HaoJ. KimY. KimT.K. KangM. PASNet: Pathway-associated sparse deep neural network for prognosis prediction from high-throughput data.BMC Bioinformatics201819151010.1186/s12859‑018‑2500‑z30558539
    [Google Scholar]
  60. RamirezR. ChiuY.C. ZhangS. RamirezJ. ChenY. HuangY. JinY.F. Prediction and interpretation of cancer survival using graph convolution neural networks.Methods202119212013010.1016/j.ymeth.2021.01.00433484826
    [Google Scholar]
  61. LiS. ShiH. SuiD. HaoA. QinH. A novel pathological images and genomic data fusion framework for breast cancer survival prediction.Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.202020201384138710.1109/EMBC44109.2020.917636033018247
    [Google Scholar]
  62. SunD WangM LiA. A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data.IEEE/ACM Trans Comput Biol Bioinform 201816384185010.1109/TCBB.2018.2806438
    [Google Scholar]
  63. HaoJ. KimY. MallavarapuT. OhJ.H. KangM. Cox-PASNet: Pathway-based sparse deep neural network for survival analysis.2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 03-06 December 2018, pp. 381-38610.1109/BIBM.2018.8621345
    [Google Scholar]
  64. GuoW. LiangW. DengQ. ZouX. A multimodal affinity fusion network for predicting the survival of breast cancer patients.Front. Genet.20211270902710.3389/fgene.2021.70902734490038
    [Google Scholar]
  65. AryaN. SahaS. Multi-modal advanced deep learning architectures for breast cancer survival prediction.Knowl. Base. Syst.202122110696510696510.1016/j.knosys.2021.106965
    [Google Scholar]
  66. AryaN SahaS Multi-modal classification for human breast cancer prognosis prediction: Proposal of deep-learning based stacked ensemble model.IEEE/ACM Trans Comput Biol Bioinform20201921032104110.1109/TCBB.2020.3018467
    [Google Scholar]
  67. WangS. ZhangH. LiuZ. LiuY. A novel deep learning method to predict lung cancer long-term survival with biological knowledge incorporated gene expression images and clinical data.Front. Genet.20221380085310.3389/fgene.2022.80085335368657
    [Google Scholar]
  68. YuJ. WuX. LvM. ZhangY. ZhangX. LiJ. ZhuM. HuangJ. ZhangQ. A model for predicting prognosis in patients with esophageal squamous cell carcinoma based on joint representation learning.Oncol. Lett.2020206110.3892/ol.2020.1225033193847
    [Google Scholar]
  69. ZhangX. XingY. SunK. GuoY. OmiEmbed: A unified multi-task deep learning framework for multi-omics data.Cancers20211312304710.3390/cancers1312304734207255
    [Google Scholar]
  70. PoirionO.B. JingZ. ChaudharyK. HuangS. GarmireL.X. DeepProg: An ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data.Genome Med.202113111210.1186/s13073‑021‑00930‑x34261540
    [Google Scholar]
  71. PoirionO.B. ChaudharyK. GarmireL.X. Deep Learning data integration for better risk stratification models of bladder cancer.AMIA Jt. Summits Transl. Sci. Proc.2018201719720629888072
    [Google Scholar]
  72. ChenW. QiaoX. YinS. ZhangX. XuX. Integrating radiomics with genomics for non-small cell lung cancer survival analysis.J. Oncol.202220221810.1155/2022/513117036065309
    [Google Scholar]
  73. LiangB. GongH. LuL. XuJ. Risk stratification and pathway analysis based on graph neural network and interpretable algorithm.BMC Bioinformatics202223139410.1186/s12859‑022‑04950‑136167504
    [Google Scholar]
  74. HaoJ. MasumM. OhJ.H. KangM. Gene- and pathway-based deep neural network for multi-omics data integration to predict cancer survival outcomes. In: Bioinformatics Research and Applications.ChamSpringer International Publishing201911312410.1007/978‑3‑030‑20242‑2_10
    [Google Scholar]
  75. FengJ. ZhangH. LiF. Investigating the relevance of major signaling pathways in cancer survival using a biologically meaningful deep learning model.BMC Bioinformatics20212214710.1186/s12859‑020‑03850‑633546587
    [Google Scholar]
  76. HuJ. YuW. DaiY. LiuC. WangY. WuQ. A deep neural network for gastric cancer prognosis prediction based on biological information pathways.J. Oncol.202220221910.1155/2022/296516636117847
    [Google Scholar]
  77. ChaudharyK. PoirionO.B. LuL. GarmireL.X. Deep learning-based multi-omics integration robustly predicts survival in liver cancer.Clin. Cancer Res.20182461248125910.1158/1078‑0432.CCR‑17‑085328982688
    [Google Scholar]
  78. LvJ. WangJ. ShangX. LiuF. GuoS. Survival prediction in patients with colon adenocarcinoma via multiomics data integration using a deep learning algorithm.Biosci. Rep.20204012BSR2020148210.1042/BSR2020148233258470
    [Google Scholar]
  79. SongH. RuanC. XuY. XuT. FanR. JiangT. CaoM. SongJ. Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model.Exp. Biol. Med.20222471189890910.1177/1535370221106501034904882
    [Google Scholar]
  80. ChaiH. ZhouX. ZhangZ. RaoJ. ZhaoH. YangY. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.Comput. Biol. Med.202113410448110448110.1016/j.compbiomed.2021.10448133989895
    [Google Scholar]
  81. WangY. ZhangZ. ChaiH. YangY. Multi-omics cancer prognosis analysis based on graph convolution network.2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 09-12 December 2021, pp. 1564-1568.10.1109/BIBM52615.2021.9669797
    [Google Scholar]
  82. HaoJ. KosarajuS.C. TsakuN.Z. SongD.H. KangM. PAGE-Net: Interpretable and integrative deep learning for survival analysis using histopathological images and genomic data.Pac. Symp. Biocomput.20202535536631797610
    [Google Scholar]
  83. OhJ.H. ChoiW. KoE. KangM. TannenbaumA. DeasyJ.O. PathCNN: Interpretable convolutional neural networks for survival prediction and pathway analysis applied to glioblastoma.Bioinformatics202137Suppl. 1i443i45010.1093/bioinformatics/btab28534252964
    [Google Scholar]
  84. LeeT.Y. HuangK.Y. ChuangC.H. LeeC.Y. ChangT.H. Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication.Comput. Biol. Chem.20208710727710727710.1016/j.compbiolchem.2020.10727732512487
    [Google Scholar]
  85. BaekB. LeeH. Prediction of survival and recurrence in patients with pancreatic cancer by integrating multi-omics data.Sci. Rep.20201011895110.1038/s41598‑020‑76025‑133144687
    [Google Scholar]
  86. AzherZ.L. VaickusL.J. SalasL.A. ChristensenB.C. LevyJ.J. Development of biologically interpretable multimodal deep learning model for cancer prognosis prediction. In: Proceedings of the 37th ACM/SIGAPP Symposium on Applied ComputingNew York, NY, USAACM202210.1145/3477314.3507032
    [Google Scholar]
  87. ZhaoL. DongQ. LuoC. WuY. BuD. QiX. LuoY. ZhaoY. DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis.Comput. Struct. Biotechnol. J.2021192719272510.1016/j.csbj.2021.04.06734093987
    [Google Scholar]
  88. LeW.T. VorontsovE. RomeroF.P. SeddikL. ElshariefM.M. Nguyen-TanP.F. RobergeD. BahigH. KadouryS. Cross-institutional outcome prediction for head and neck cancer patients using self-attention neural networks.Sci. Rep.2022121318310.1038/s41598‑022‑07034‑535210482
    [Google Scholar]
  89. SchulzS. WoerlA.C. JungmannF. GlasnerC. StenzelP. StroblS. FernandezA. WagnerD.C. HaferkampA. MildenbergerP. RothW. FoerschS. Multimodal deep learning for prognosis prediction in renal cancer.Front. Oncol.20211178874010.3389/fonc.2021.78874034900744
    [Google Scholar]
  90. TomczakK. CzerwińskaP. WiznerowiczM. Review the cancer genome atlas (TCGA): An immeasurable source of knowledge.Contemp. Oncol.20151A1A687710.5114/wo.2014.4713625691825
    [Google Scholar]
  91. WangZ. JensenM.A. ZenklusenJ.C. A practical guide to the cancer genome atlas (TCGA).Methods Mol. Biol.2016141811114110.1007/978‑1‑4939‑3578‑9_627008012
    [Google Scholar]
  92. GoldmanM. CraftB. ZhuJ. HausslerD. Abstract 911: UCSC Xena for cancer genomics visualization and interpretation.Cancer Res.20197913_SupplementSuppl.91191110.1158/1538‑7445.AM2019‑911
    [Google Scholar]
  93. GoldmanM. CraftB. ZhuJ. HausslerD. Abstract 5039: Visualization and analysis of cancer genomics data using UCSC Xena.Cancer Res.20228212_SupplementSuppl.5039503910.1158/1538‑7445.AM2022‑5039
    [Google Scholar]
  94. EdgarR. DomrachevM. LashA.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.Nucleic Acids Res.200230120721010.1093/nar/30.1.20711752295
    [Google Scholar]
  95. CloughE. BarrettT. The gene expression omnibus database. In: Methods in Molecular BiologySpringer New York201693110
    [Google Scholar]
  96. WarrenJ.L. KlabundeC.N. SchragD. BachP.B. RileyG.F. Overview of the SEER-medicare data: content, research applications, and generalizability to the United States elderly population.Med. Care2002408Suppl.IV, 3-IV-1810.1097/00005650‑200208001‑0000212187163
    [Google Scholar]
  97. EnewoldL. ParsonsH. ZhaoL. BottD. RiveraD.R. BarrettM.J. VirnigB.A. WarrenJ.L. Updated overview of the SEER-Medicare data: Enhanced content and applications.J. Natl. Cancer Inst. Monogr.202020205531310.1093/jncimonographs/lgz02932412076
    [Google Scholar]
  98. CurtisC. ShahS.P. ChinS.F. TurashviliG. RuedaO.M. DunningM.J. SpeedD. LynchA.G. SamarajiwaS. YuanY. GräfS. HaG. HaffariG. BashashatiA. RussellR. McKinneyS. LangerødA. GreenA. ProvenzanoE. WishartG. PinderS. WatsonP. MarkowetzF. MurphyL. EllisI. PurushothamA. Børresen-DaleA.L. BrentonJ.D. TavaréS. CaldasC. AparicioS. METABRIC Group The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.Nature2012486740334635210.1038/nature1098322522925
    [Google Scholar]
  99. ClarkK. VendtB. SmithK. FreymannJ. KirbyJ. KoppelP. MooreS. PhillipsS. MaffittD. PringleM. TarboxL. PriorF. The cancer imaging archive (TCIA): maintaining and operating a public information repository.J. Digit. Imaging20132661045105710.1007/s10278‑013‑9622‑723884657
    [Google Scholar]
  100. LiberzonA. SubramanianA. PinchbackR. ThorvaldsdóttirH. TamayoP. MesirovJ.P. Molecular signatures database (MSigDB) 3.0.Bioinformatics201127121739174010.1093/bioinformatics/btr26021546393
    [Google Scholar]
  101. KanehisaM. GotoS. KEGG: kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  102. BrazmaA. ParkinsonH. SarkansU. ShojatalabM. ViloJ. AbeygunawardenaN. HollowayE. KapusheskyM. KemmerenP. LaraG.G. OezcimenA. Rocca-SerraP. SansoneS.A. ArrayExpress--a public repository for microarray gene expression data at the EBI.Nucleic Acids Res.2003311687110.1093/nar/gkg09112519949
    [Google Scholar]
  103. FabregatA. JupeS. MatthewsL. SidiropoulosK. GillespieM. GarapatiP. HawR. JassalB. KorningerF. MayB. MilacicM. RocaC.D. RothfelsK. SevillaC. ShamovskyV. ShorserS. VarusaiT. ViteriG. WeiserJ. WuG. SteinL. HermjakobH. D’EustachioP. The reactome pathway knowledgebase.Nucleic Acids Res.201846D1D649D65510.1093/nar/gkx113229145629
    [Google Scholar]
  104. LiuJ. LichtenbergT. HoadleyK.A. PoissonL.M. LazarA.J. CherniackA.D. KovatichA.J. BenzC.C. LevineD.A. LeeA.V. OmbergL. WolfD.M. ShriverC.D. ThorssonV. HuH. Caesar-JohnsonS.J. DemchokJ.A. FelauI. KasapiM. FergusonM.L. HutterC.M. SofiaH.J. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ.J. ChudamaniS. LiuJ. LollaL. NareshR. PihlT. SunQ. WanY. WuY. ChoJ. DeFreitasT. FrazerS. GehlenborgN. GetzG. HeimanD.I. KimJ. LawrenceM.S. LinP. MeierS. NobleM.S. SaksenaG. VoetD. ZhangH. BernardB. ChambweN. DhankaniV. KnijnenburgT. KramerR. LeinonenK. LiuY. MillerM. ReynoldsS. ShmulevichI. ThorssonV. ZhangW. AkbaniR. BroomB.M. HegdeA.M. JuZ. KanchiR.S. KorkutA. LiJ. LiangH. LingS. LiuW. LuY. MillsG.B. NgK-S. RaoA. RyanM. WangJ. WeinsteinJ.N. ZhangJ. AbeshouseA. ArmeniaJ. ChakravartyD. ChatilaW.K. de BruijnI. GaoJ. GrossB.E. HeinsZ.J. KundraR. LaK. LadanyiM. LunaA. NissanM.G. OchoaA. PhillipsS.M. ReznikE. Sanchez-VegaF. SanderC. SchultzN. SheridanR. SumerS.O. SunY. TaylorB.S. WangJ. ZhangH. AnurP. PetoM. SpellmanP. BenzC. StuartJ.M. WongC.K. YauC. HayesD.N. ParkerJ.S. WilkersonM.D. AllyA. BalasundaramM. BowlbyR. BrooksD. CarlsenR. ChuahE. DhallaN. HoltR. JonesS.J.M. KasaianK. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. MungallK. RobertsonA.G. SadeghiS. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. TseK. WongT. BergerA.C. BeroukhimR. CherniackA.D. CibulskisC. GabrielS.B. GaoG.F. HaG. MeyersonM. SchumacherS.E. ShihJ. KucherlapatiM.H. KucherlapatiR.S. BaylinS. CopeL. DanilovaL. BootwallaM.S. LaiP.H. MaglinteD.T. Van Den BergD.J. WeisenbergerD.J. AumanJ.T. BaluS. BodenheimerT. FanC. HoadleyK.A. HoyleA.P. JefferysS.R. JonesC.D. MengS. MieczkowskiP.A. MoseL.E. PerouA.H. PerouC.M. RoachJ. ShiY. SimonsJ.V. SkellyT. SolowayM.G. TanD. VeluvoluU. FanH. HinoueT. LairdP.W. ShenH. ZhouW. BellairM. ChangK. CovingtonK. CreightonC.J. DinhH. DoddapaneniH.V. DonehowerL.A. DrummondJ. GibbsR.A. GlennR. HaleW. HanY. HuJ. KorchinaV. LeeS. LewisL. LiW. LiuX. MorganM. MortonD. MuznyD. SantibanezJ. ShethM. ShinbroE. WangL. WangM. WheelerD.A. XiL. ZhaoF. HessJ. AppelbaumE.L. BaileyM. CordesM.G. DingL. FronickC.C. FultonL.A. FultonR.S. KandothC. MardisE.R. McLellanM.D. MillerC.A. SchmidtH.K. WilsonR.K. CrainD. CurleyE. GardnerJ. LauK. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. ShermanM. ThompsonE. YenaP. BowenJ. Gastier-FosterJ.M. GerkenM. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. CorcoranN. CostelloT. HovensC. CarvalhoA.L. de CarvalhoA.C. FregnaniJ.H. Longatto-FilhoA. ReisR.M. Scapulatempo-NetoC. SilveiraH.C.S. VidalD.O. BurnetteA. EschbacherJ. HermesB. NossA. SinghR. AndersonM.L. CastroP.D. IttmannM. HuntsmanD. KohlB. LeX. ThorpR. AndryC. DuffyE.R. LyadovV. PaklinaO. SetdikovaG. ShabuninA. TavobilovM. McPhersonC. WarnickR. BerkowitzR. CramerD. FeltmateC. HorowitzN. KibelA. MutoM. RautC.P. MalykhA. Barnholtz-SloanJ.S. BarrettW. DevineK. FulopJ. OstromQ.T. ShimmelK. WolinskyY. SloanA.E. De RoseA. GiulianteF. GoodmanM. KarlanB.Y. HagedornC.H. EckmanJ. HarrJ. MyersJ. TuckerK. ZachL.A. DeyarminB. HuH. KvecherL. LarsonC. MuralR.J. SomiariS. VichaA. ZelinkaT. BennettJ. IacoccaM. RabenoB. SwansonP. LatourM. LacombeL. TêtuB. BergeronA. McGrawM. StaugaitisS.M. ChabotJ. HibshooshH. SepulvedaA. SuT. WangT. PotapovaO. VoroninaO. DesjardinsL. MarianiO. Roman-RomanS. SastreX. SternM-H. ChengF. SignorettiS. BerchuckA. BignerD. LippE. MarksJ. McCallS. McLendonR. SecordA. SharpA. BeheraM. BratD.J. ChenA. DelmanK. ForceS. KhuriF. MaglioccaK. MaithelS. OlsonJ.J. OwonikokoT. PickensA. RamalingamS. ShinD.M. SicaG. Van MeirE.G. ZhangH. EijckenboomW. GillisA. KorpershoekE. LooijengaL. OosterhuisW. StoopH. van KesselK.E. ZwarthoffE.C. CalatozzoloC. CuppiniL. CuzzubboS. DiMecoF. FinocchiaroG. MatteiL. PerinA. PolloB. ChenC. HouckJ. LohavanichbutrP. HartmannA. StoehrC. StoehrR. TaubertH. WachS. WullichB. KyclerW. MurawaD. WiznerowiczM. ChungK. EdenfieldW.J. MartinJ. BaudinE. BubleyG. BuenoR. De RienzoA. RichardsW.G. KalkanisS. MikkelsenT. NoushmehrH. ScarpaceL. GirardN. AymerichM. CampoE. GinéE. GuillermoA.L. Van BangN. HanhP.T. PhuB.D. TangY. ColmanH. EvasonK. DottinoP.R. MartignettiJ.A. GabraH. JuhlH. AkeredoluT. StepaS. HoonD. AhnK. KangK.J. BeuschleinF. BreggiaA. BirrerM. BellD. BoradM. BryceA.H. CastleE. ChandanV. ChevilleJ. CoplandJ.A. FarnellM. FlotteT. GiamaN. HoT. KendrickM. KocherJ-P. KoppK. MoserC. NagorneyD. O’BrienD. O’NeillB.P. PatelT. PetersenG. QueF. RiveraM. RobertsL. SmallridgeR. SmyrkT. StantonM. ThompsonR.H. TorbensonM. YangJ.D. ZhangL. BrimoF. AjaniJ.A. Angulo GonzalezA.M. BehrensC. BondarukJ. BroaddusR. CzerniakB. EsmaeliB. FujimotoJ. GershenwaldJ. GuoC. LazarA.J. LogothetisC. Meric-BernstamF. MoranC. RamondettaL. RiceD. SoodA. TamboliP. ThompsonT. TroncosoP. TsaoA. WistubaI. CarterC. HayduL. HerseyP. JakrotV. KakavandH. KeffordR. LeeK. LongG. MannG. QuinnM. SawR. ScolyerR. ShannonK. SpillaneA. StretchJ. SynottM. ThompsonJ. WilmottJ. Al-AhmadieH. ChanT.A. GhosseinR. GopalanA. LevineD.A. ReuterV. SingerS. SinghB. TienN.V. BroudyT. MirsaidiC. NairP. DrwiegaP. MillerJ. SmithJ. ZarenH. ParkJ-W. HungN.P. KebebewE. LinehanW.M. MetwalliA.R. PacakK. PintoP.A. SchiffmanM. SchmidtL.S. VockeC.D. WentzensenN. WorrellR. YangH. MoncrieffM. GoparajuC. MelamedJ. PassH. BotnariucN. CaramanI. CernatM. ChemencedjiI. ClipcaA. DorucS. GorincioiG. MuraS. PirtacM. StanculI. TcaciucD. AlbertM. AlexopoulouI. ArnaoutA. BartlettJ. EngelJ. GilbertS. ParfittJ. SekhonH. ThomasG. RasslD.M. RintoulR.C. BifulcoC. TamakawaR. UrbaW. HaywardN. TimmersH. AntenucciA. FaccioloF. GraziG. MarinoM. MerolaR. de KrijgerR. Gimenez-RoqueploA-P. PichéA. ChevalierS. McKercherG. BirsoyK. BarnettG. BrewerC. FarverC. NaskaT. PennellN.A. RaymondD. SchileroC. SmolenskiK. WilliamsF. MorrisonC. BorgiaJ.A. LiptayM.J. PoolM. SederC.W. JunkerK. OmbergL. DinkinM. ManikhasG. AlvaroD. BragazziM.C. CardinaleV. CarpinoG. GaudioE. CheslaD. CottinghamS. DubinaM. MoiseenkoF. DhanasekaranR. BeckerK-F. JanssenK-P. Slotta-HuspeninaJ. Abdel-RahmanM.H. AzizD. BellS. CebullaC.M. DavisA. DuellR. ElderJ.B. HiltyJ. KumarB. LangJ. LehmanN.L. MandtR. NguyenP. PilarskiR. RaiK. SchoenfieldL. SenecalK. WakelyP. HansenP. LechanR. PowersJ. TischlerA. GrizzleW.E. SextonK.C. KastlA. HendersonJ. PortenS. WaldmannJ. FassnachtM. AsaS.L. SchadendorfD. CouceM. GraefenM. HulandH. SauterG. SchlommT. SimonR. TennstedtP. OlabodeO. NelsonM. BatheO. CarrollP.R. ChanJ.M. DisaiaP. GlennP. KelleyR.K. LandenC.N. PhillipsJ. PradosM. SimkoJ. Smith-McCuneK. VandenBergS. RogginK. FehrenbachA. KendlerA. SifriS. SteeleR. JimenoA. CareyF. ForgieI. MannelliM. CarneyM. HernandezB. CamposB. Herold-MendeC. JungkC. UnterbergA. von DeimlingA. BosslerA. GalbraithJ. JacobusL. KnudsonM. KnutsonT. MaD. MilhemM. SigmundR. GodwinA.K. MadanR. RosenthalH.G. AdebamowoC. AdebamowoS.N. BoussioutasA. BeerD. GiordanoT. Mes-MassonA-M. SaadF. BocklageT. LandrumL. MannelR. MooreK. MoxleyK. PostierR. WalkerJ. ZunaR. FeldmanM. ValdiviesoF. DhirR. LuketichJ. Mora PineroE.M. Quintero-AguiloM. CarlottiC.G.Jr Dos SantosJ.S. KempR. SankarankutyA. TirapelliD. CattoJ. AgnewK. SwisherE. CreaneyJ. RobinsonB. ShelleyC.S. GodwinE.M. KendallS. ShipmanC. BradfordC. CareyT. HaddadA. MoyerJ. PetersonL. PrinceM. RozekL. WolfG. BowmanR. FongK.M. YangI. KorstR. RathmellW.K. Fantacone-CampbellJ.L. HookeJ.A. KovatichA.J. ShriverC.D. DiPersioJ. DrakeB. GovindanR. HeathS. LeyT. Van TineB. WesterveltP. RubinM.A. LeeJ.I. AredesN.D. MariamidzeA. Cancer Genome Atlas Research Network An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics.Cell20181732400416.e1110.1016/j.cell.2018.02.05229625055
    [Google Scholar]
  105. FreemanJ.L. PerryG.H. FeukL. RedonR. McCarrollS.A. AltshulerD.M. AburataniH. JonesK.W. Tyler-SmithC. HurlesM.E. CarterN.P. SchererS.W. LeeC. Copy number variation: New insights in genome diversity.Genome Res.200616894996110.1101/gr.367720616809666
    [Google Scholar]
  106. RobertsonK.D. DNA methylation and human disease.Nat. Rev. Genet.20056859761010.1038/nrg165516136652
    [Google Scholar]
  107. DasP.M. SingalR. DNA methylation and cancer.J. Clin. Oncol.200422224632464210.1200/JCO.2004.07.15115542813
    [Google Scholar]
  108. CeramiE.G. GrossB.E. DemirE. RodchenkovI. BaburO. AnwarN. SchultzN. BaderG.D. SanderC. Pathway commons, a web resource for biological pathway data.Nucleic Acids Res.201139DatabaseD685D69010.1093/nar/gkq103921071392
    [Google Scholar]
  109. ForbesS.A. BeareD. GunasekaranP. LeungK. BindalN. BoutselakisH. DingM. BamfordS. ColeC. WardS. KokC.Y. JiaM. DeT. TeagueJ.W. StrattonM.R. McDermottU. CampbellP.J. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer.Nucleic Acids Res.201543D1D805D81110.1093/nar/gku107525355519
    [Google Scholar]
  110. MartincorenaI. CampbellP.J. Somatic mutation in cancer and normal cells.Science201534962551483148910.1126/science.aab408226404825
    [Google Scholar]
  111. LoweR. ShirleyN. BleackleyM. DolanS. ShafeeT. Transcriptomics technologies.PLOS Comput. Biol.2017135e100545710.1371/journal.pcbi.100545728545146
    [Google Scholar]
  112. BrazmaA. ViloJ. Gene expression data analysis.FEBS Lett.20004801172410.1016/S0014‑5793(00)01772‑510967323
    [Google Scholar]
  113. BushatiN. CohenS.M. microRNA functions.Annu. Rev. Cell Dev. Biol.200723117520510.1146/annurev.cellbio.23.090506.12340617506695
    [Google Scholar]
  114. JanssonM.D. LundA.H. MicroRNA and cancer.Mol. Oncol.20126659061010.1016/j.molonc.2012.09.00623102669
    [Google Scholar]
  115. GilliesR.J. KinahanP.E. HricakH. Radiomics: Images are more than pictures, they are data.Radiology2016278256357710.1148/radiol.201515116926579733
    [Google Scholar]
  116. LambinP. LeijenaarR.T.H. DeistT.M. PeerlingsJ. de JongE.E.C. van TimmerenJ. SanduleanuS. LarueR.T.H.M. EvenA.J.G. JochemsA. van WijkY. WoodruffH. van SoestJ. LustbergT. RoelofsE. van ElmptW. DekkerA. MottaghyF.M. WildbergerJ.E. WalshS. Radiomics: The bridge between medical imaging and personalized medicine.Nat. Rev. Clin. Oncol.2017141274976210.1038/nrclinonc.2017.14128975929
    [Google Scholar]
  117. DimitriouN. ArandjelovićO. CaieP.D. Deep learning for whole slide image analysis: An overview.Front. Med.2019626410.3389/fmed.2019.0026431824952
    [Google Scholar]
  118. GoldmanL.W. Principles of CT and CT technology.J. Nucl. Med. Technol.200735311512810.2967/jnmt.107.04297817823453
    [Google Scholar]
  119. ThoenyH.C. RossB.D. Predicting and monitoring cancer treatment response with diffusion‐weighted MRI.J. Magn. Reson. Imaging201032121610.1002/jmri.2216720575076
    [Google Scholar]
  120. ShethD. GigerM.L. Artificial intelligence in the interpretation of breast cancer on MRI.J. Magn. Reson. Imaging20205151310132410.1002/jmri.2687831343790
    [Google Scholar]
  121. ZangheriB. MessaC. PicchioM. GianolliL. LandoniC. FazioF. PET/CT and breast cancer.Eur. J. Nucl. Med. Mol. Imaging200431Suppl. 1S135S14210.1007/s00259‑004‑1536‑715133636
    [Google Scholar]
  122. HanashS. Disease proteomics.Nature2003422692822623210.1038/nature0151412634796
    [Google Scholar]
  123. AslamB. BasitM. NisarM.A. KhurshidM. RasoolM.H. Proteomics: Technologies and their applications.J. Chromatogr. Sci.201755218219610.1093/chromsci/bmw16728087761
    [Google Scholar]
  124. SubramanianI. VermaS. KumarS. JereA. AnamikaK. Multi-omics data integration, interpretation, and its application.Bioinform. Biol. Insights202014117793221989905110.1177/117793221989905132076369
    [Google Scholar]
  125. AldeenY.A.A.S. SallehM. RazzaqueM.A. A comprehensive review on privacy preserving data mining.Springerplus20154169410.1186/s40064‑015‑1481‑x26587362
    [Google Scholar]
  126. RiekeN. HancoxJ. LiW. MilletarìF. RothH.R. AlbarqouniS. BakasS. GaltierM.N. LandmanB.A. Maier-HeinK. OurselinS. ShellerM. SummersR.M. TraskA. XuD. BaustM. CardosoM.J. The future of digital health with federated learning.NPJ Digit. Med.20203111910.1038/s41746‑020‑00323‑133015372
    [Google Scholar]
  127. PrayitnoS.C-R. ShyuC-R. PutraK.T. ChenH-C. TsaiY-Y. HossainK.S.M.T. JiangW. ShaeZ-Y. A systematic review of federated learning in the healthcare area: From the perspective of data properties and applications.Appl. Sci.202111231119110.3390/app112311191
    [Google Scholar]
  128. PageM.J. MoherD. BossuytP. BoutronI. HoffmannT. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews.BMJ202137210.31222/osf.io/gwdhk
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936289033240424071522
Loading
/content/journals/cbio/10.2174/0115748936289033240424071522
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test