Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

The identification and functional prediction of Multifunctional Therapeutic Peptides (MFTP) play a pivotal role in drug discovery, particularly for conditions such as inflammation and hyperglycemia. Current computational methods exhibit limitations in their ability to accurately predict the multifunctionality of these peptides.

Methods

We propose a novel Wide and Deep Learning Framework that integrates both deep learning and machine learning approaches. The deep learning segment processes sequence vectors using a neural network model, while the wide segment utilizes the physicochemical properties of peptides in a random forest-based model. This hybrid approach aims to enhance the accuracy of MFTP function prediction.

Results

Our framework outperformed the existing PrMFTP predictor in terms of precision, coverage, accuracy, and absolute true values. The evaluation was conducted on both training and independent testing datasets, demonstrating the robustness and generalizability of our model.

Conclusion

The proposed Wide & Deep Learning Framework offers a significant advancement in the computational prediction of MFTP functions. The availability of our model through a user-friendly web interface at MFTP-Tool.m6aminer.cn provides a valuable tool for researchers in the field of therapeutic peptide-based drug discovery, potentially accelerating the development of new treatments.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936299646240625092734
2024-07-09
2025-01-19
Loading full text...

Full text loading...

References

  1. MuttenthalerM. KingG.F. AdamsD.J. AlewoodP.F. Trends in peptide drug discovery.Nat. Rev. Drug Discov.202120430932510.1038/s41573‑020‑00135‑8 33536635
    [Google Scholar]
  2. FosgerauK. HoffmannT. Peptide therapeutics: Current status and future directions.Drug Discov. Today201520112212810.1016/j.drudis.2014.10.003 25450771
    [Google Scholar]
  3. HaggagY.A. El-GizawyS.A. OsmanM. Peptides as drug candidates: Limitations and recent development perspectives.Biomed. J. Sci. Tech. Res.20188410.26717/BJSTR.2018.08.001694
    [Google Scholar]
  4. VliegheP. LisowskiV. MartinezJ. KhrestchatiskyM. Synthetic therapeutic peptides: Science and market.Drug Discov. Today2010151-2405610.1016/j.drudis.2009.10.009 19879957
    [Google Scholar]
  5. AaronK.S. MaliniV. Therapeutic peptides: Technological advances driving peptides into development.Curr. opin. biotechnol.200617663864210.1016/j.copbio.2006.10.002
    [Google Scholar]
  6. WattP.M. Screening for peptide drugs from the natural repertoire of biodiverse protein folds.Nat. Biotechnol.200624217718310.1038/nbt1190 16465163
    [Google Scholar]
  7. SadeghianI. AkbarpourM. ChafjiriF.M.A. Potential of oligonucleotide- and protein/peptide-based therapeutics in the management of toxicant/stressor-induced diseases.Naunyn Schmiedebergs Arch. Pharmacol.202439731275131010.1007/s00210‑023‑02683‑3 37688622
    [Google Scholar]
  8. AbdoliN. SadeghianI. MousaviK. AzarpiraN. OmmatiM.M. HeidariR. Suppression of cirrhosis-related renal injury by N-acetyl cysteine.Curr. Res. Pharmacol. Drug Discov.20201303810.1016/j.crphar.2020.100006 34909640
    [Google Scholar]
  9. FischerP.M. LaneD.P. Small-molecule inhibitors of the p53 suppressor HDM2: Have protein–protein interactions come of age as drug targets?Trends Pharmacol. Sci.200425734334610.1016/j.tips.2004.04.011 15219971
    [Google Scholar]
  10. DaiS. MengF. Addressing modern and practical challenges in machine learning: A survey of online federated and transfer learning.Appl. Intell.2023539110451107210.1007/s10489‑022‑04065‑3
    [Google Scholar]
  11. XuD. WuY. ChengZ. YangJ. DingY. Achp: A web server for predicting anti-cancer peptide and anti-hypertensive peptide.Int. J. Pept. Res. Ther.20212731933194410.1007/s10989‑021‑10222‑y
    [Google Scholar]
  12. BoopathiV. SubramaniyamS. MalikA. LeeG. ManavalanB. YangD.C. mACPpred: A support vector machine-based meta-predictor for identification of anticancer peptides.Int. J. Mol. Sci.2019208196410.3390/ijms20081964 31013619
    [Google Scholar]
  13. ChenW. DingH. FengP. LinH. ChouK.C. iACP: A sequence-based tool for identifying anticancer peptides.Oncotarget2016713168951690910.18632/oncotarget.7815 26942877
    [Google Scholar]
  14. GiustolisiO. RidolfiL. SimoneA. Embedding the intrinsic relevance of vertices in network analysis: The case of centrality metrics.Sci. Rep.2020101329710.1038/s41598‑020‑60151‑x 32094431
    [Google Scholar]
  15. Fallah AtanakiF. BehrouziS. AriaeenejadS. BoroomandA. KavousiK. BIPEP: Sequence-based prediction of biofilm inhibitory peptides using a combination of NMR and physicochemical descriptors.ACS Omega20205137290729710.1021/acsomega.9b04119 32280870
    [Google Scholar]
  16. JamalM. AhmadW. AndleebS. Bacterial biofilm and associated infections.J. Chin. Med. Assoc.201881171110.1016/j.jcma.2017.07.012 29042186
    [Google Scholar]
  17. BrackmanG. CoenyeT. Quorum sensing inhibitors as anti-biofilm agents.Curr. Pharm. Des.201421151110.2174/1381612820666140905114627 25189863
    [Google Scholar]
  18. Erdem BüyükkirazM. KesmenZ. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.J. Appl. Microbiol.202213231573159610.1111/jam.15314 34606679
    [Google Scholar]
  19. StewartR.D. AuffretM.D. WarrA. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen.Nat. Commun.20189187010.1038/s41467‑018‑03317‑6 29491419
    [Google Scholar]
  20. ZhangW. XiaE. DaiR. TangW. BinY. XiaJ. Predapp: Predicting anti-parasitic peptides with undersampling and ensemble approaches.Interdiscip. Sci.202214125826810.1007/s12539‑021‑00484‑x 34608613
    [Google Scholar]
  21. ZahedifardF. RafatiS. Prospects for antimicrobial peptide-based immunotherapy approaches in Leishmania control.Expert Rev. Anti Infect. Ther.201816646146910.1080/14787210.2018.1483720 29889579
    [Google Scholar]
  22. Patiño-MárquezI.A. Manrique-MorenoM. Patiño-GonzálezE. Jemioła-RzemińskaM. StrzałkaK. Effect of antimicrobial peptides from Galleria mellonella on molecular models of Leishmania membrane. Thermotropic and fluorescence anisotropy study.J. Antibiot. 201871764265210.1038/s41429‑018‑0050‑2 29679042
    [Google Scholar]
  23. WangZ. XiaL. YuanH. SrinivasanR.S. SongX. Principles, research status, and prospects of feature engineering for data-driven building energy prediction: A comprehensive review.J. Build. Eng.20225810502810.1016/j.jobe.2022.105028
    [Google Scholar]
  24. KaulA. MaheshwaryS. PudiV. AutoLearn: Automated feature generation and selection.2017 IEEE International Conference on Data Mining (ICDM) New Orleans, LA, USA201721722610.1109/ICDM.2017.31
    [Google Scholar]
  25. ChuY. KaushikA.C. WangX. DTI-CDF: A cascade deep forest model towards the prediction of drug-target interactions based on hybrid features.Brief. Bioinform.202122145146210.1093/bib/bbz152 31885041
    [Google Scholar]
  26. HanY. KimD. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.BMC Bioinformat201718158510.1186/s12859‑017‑1997‑x 29281985
    [Google Scholar]
  27. DengY. XuX. QiuY. XiaJ. ZhangW. LiuS. A multimodal deep learning framework for predicting drug–drug interaction events.Bioinformatics202036154316432210.1093/bioinformatics/btaa501 32407508
    [Google Scholar]
  28. FangC. MoriwakiY. LiC. ShimizuK. Prediction of antifungal peptides by deep learning with character embedding.IPSJ Transact Bioinform201912212910.2197/ipsjtbio.12.21
    [Google Scholar]
  29. LiJ. PuY. TangJ. ZouQ. GuoF. DeepAVP: A dual-channel deep neural network for identifying variable-length antiviral peptides.IEEE J. Biomed. Health Inform.202024103012301910.1109/JBHI.2020.2977091 32142462
    [Google Scholar]
  30. LinT.T. YangL.Y. LuI.H. AI4AMP: An antimicrobial peptide predictor using physicochemical property-based encoding method and deep learning.mSystems202166e00299e2110.1128/mSystems.00299‑21 34783578
    [Google Scholar]
  31. SharmaR. ShrivastavaS. Kumar SinghS. KumarA. SaxenaS. Kumar SinghR. Deep-ABPpred: Identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec.Brief. Bioinform.2021225bbab06510.1093/bib/bbab065 33784381
    [Google Scholar]
  32. LiS. ChenJ. LiuB. Protein remote homology detection based on bidirectional long short-term memory.BMC Bioinformatics201718144310.1186/s12859‑017‑1842‑2 29017445
    [Google Scholar]
  33. LeiY. LiS. LiuZ. A deep-learning framework for multi-level peptide–protein interaction prediction.Nat. Commun.2021121546510.1038/s41467‑021‑25772‑4 34526500
    [Google Scholar]
  34. ZhouP. WangC. RenY. YangC. TianF. Computational peptidology: A new and promising approach to therapeutic peptide design.Curr. Med. Chem.201320151985199610.2174/0929867311320150005 23317161
    [Google Scholar]
  35. SagheerA. KotbM. Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems.Sci. Rep.2019911903810.1038/s41598‑019‑55320‑6 31836728
    [Google Scholar]
  36. KerbaaT.H. MezacheA. GiniF. GrecoM.S. Multi-headed deep learning-based estimator for correlated-SIRV Pareto type II distributed clutter.EURASIP J. Adv. Signal Process.2023202318110.1186/s13634‑023‑00982‑8
    [Google Scholar]
  37. SchmidhuberJ. Deep learning in neural networks: An overview.Neural Netw.2015618511710.1016/j.neunet.2014.09.003 25462637
    [Google Scholar]
  38. WangL. WangN. ZhangW. Therapeutic peptides: Current applications and future directions.Signal Transduct. Target. Ther.2022714810.1038/s41392‑022‑00904‑4 35165272
    [Google Scholar]
  39. LauJ.L. DunnM.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions.Bioorg. Med. Chem.201826102700270710.1016/j.bmc.2017.06.052 28720325
    [Google Scholar]
  40. BurnessC.B. McCormackP.L. Teduglutide: A review of its use in the treatment of patients with short bowel syndrome.Drugs201373993594710.1007/s40265‑013‑0070‑y 23729002
    [Google Scholar]
  41. GorskiP.A. LeeA. LeeP. Identification and characterization of p300-mediated lysine residues in cardiac SERCA2a.Int. J. Mol. Sci.2023244350210.3390/ijms24043502 36834924
    [Google Scholar]
  42. BragazziN.L. ZhongW. ShuJ. Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017.Eur. J. Prev. Cardiol.202128151682169010.1093/eurjpc/zwaa147 33571994
    [Google Scholar]
  43. BeltraoP. BorkP. KroganN.J. van NoortV. Evolution and functional cross-talk of protein post-translational modifications.Mol. Syst. Biol.20139171410.1002/msb.201304521 24366814
    [Google Scholar]
  44. PangY. YaoL. XuJ. WangZ. LeeT.Y. Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities.Bioinformatics202238245368537410.1093/bioinformatics/btac711 36326438
    [Google Scholar]
  45. CharoenkwanP. ChumnanpuenP. SchaduangratN. ShoombuatongW. Accelerating the identification of the allergenic potential of plant proteins using a stacked ensemble-learning framework.J. Biomol. Struct. Dyn.202411310.1080/07391102.2024.2318482 38385478
    [Google Scholar]
  46. WeiL. ZhouC. SuR. ZouQ. PEPred-Suite: Improved and robust prediction of therapeutic peptides using adaptive feature representation learning.Bioinformatics201935214272428010.1093/bioinformatics/btz246 30994882
    [Google Scholar]
  47. BorchaniH. BielzaC. ToroC. LarrañagaP. Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers.Artif. Intell. Med.201357321922910.1016/j.artmed.2012.12.005 23375464
    [Google Scholar]
  48. DembczynskiK. KotlowskiW. HüllermeierE. Consistent multilabel ranking through univariate losses. arXiv:12066401 201210.48550/arXiv.1206.6401
    [Google Scholar]
  49. ChengW. HüllermeierE. A simple instance-based approach to multilabel classification using the mallows model.Working Notes of the First International Workshop on Learning from Multi-Label Data.2838
    [Google Scholar]
  50. ZhangM. ZhouZ. A review on multi-label learning algorithms.IEEE Transac. Knowl. Data Eng.20142681819183710.1109/TKDE.2013.39
    [Google Scholar]
  51. LiR. ZhouG. LiX. JiaL. ShangZ. Semi-supervised multi-label dimensionality reduction learning based on minimizing redundant correlation of specific and common features.Knowl. Base. Syst.202429411178910.1016/j.knosys.2024.111789
    [Google Scholar]
  52. YuY. WanM. QianJ. MiaoD. ZhangZ. ZhaoP. Feature selection for multi-label learning based on variable-degree multi-granulation decision-theoretic rough sets.Int. J. Approx. Reason.202416910918110.1016/j.ijar.2024.109181
    [Google Scholar]
  53. YanK. LvH. WenJ. GuoY. LiuB.T.P-M.V. Therapeutic peptides prediction by multi-view learning.Curr. Bioinform.202217217418310.2174/1574893617666211220153429
    [Google Scholar]
  54. TangW. DaiR. YanW. Identifying multi-functional bioactive peptide functions using multi-label deep learning.Brief. Bioinform.2022231bbab41410.1093/bib/bbab414 34651655
    [Google Scholar]
  55. YanW. TangW. WangL. BinY. XiaJ. PrMFTP: Multi-functional therapeutic peptides prediction based on multi-head self-attention mechanism and class weight optimization.PLOS Comput. Biol.2022189e101051110.1371/journal.pcbi.1010511 36094961
    [Google Scholar]
  56. LinZ. FengM. SantosC. A structured self-attentive sentence embedding.arXiv1703031302017Available from: https://openreview.net/forum?id=BJC_jUqxe
    [Google Scholar]
  57. WangJ. ZhangD. LiJ. PREAL: Prediction of allergenic protein by maximum Relevance Minimum Redundancy (mRMR) feature selection.BMC Syst. Biol.20137Suppl. 5S910.1186/1752‑0509‑7‑S5‑S9
    [Google Scholar]
  58. FanH. YanW. WangL. LiuJ. BinY. XiaJ. Deep learning-based multi-functional therapeutic peptides prediction with a multi-label focal dice loss function.Bioinformatics2023396btad33410.1093/bioinformatics/btad334 37216900
    [Google Scholar]
  59. LvH. YanK. LiuB. TPpred-LE: Therapeutic peptide function prediction based on label embedding.BMC Biol.202321123810.1186/s12915‑023‑01740‑w 37904157
    [Google Scholar]
  60. YangY. WuH. GaoY. TongW. LiK. MFPPDB: A comprehensive multi-functional plant peptide database.Front Plant Sci202314122439410.3389/fpls.2023.1224394 37908832
    [Google Scholar]
  61. BoltyanskiV. Optimization and robustness.Optimization2005544-536937610.1080/02331930500137520
    [Google Scholar]
  62. YazdaniD. OmidvarM.N. YazdaniD. BrankeJ. NguyenT.T. GandomiA.H. Robust optimization over time: A critical review.IEEE Trans. Evol. Comput.202327365766710.1109/TEVC.2022.3180590
    [Google Scholar]
  63. Novoa-HernándezP. PurisA. PeltaD.A. Robust optimization over time problems—characterization and literature review.Electronics 20231222460910.3390/electronics12224609
    [Google Scholar]
  64. LiF. LiC. WangM. GlycoMine: A machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.Bioinformatics20153191411141910.1093/bioinformatics/btu852 25568279
    [Google Scholar]
  65. ChenZ. ZhouY. ZhangZ. SongJ. Towards more accurate prediction of ubiquitination sites: A comprehensive review of current methods, tools and features.Brief. Bioinform.201516464065710.1093/bib/bbu031 25212598
    [Google Scholar]
  66. ChenJ. ZhaoJ. YangS. ChenZ. ZhangZ. Prediction of protein ubiquitination sites in Arabidopsis thaliana.Curr. Bioinform.201914761462010.2174/1574893614666190311141647
    [Google Scholar]
  67. KawashimaS PokarowskiP PokarowskaM KolinskiA KatayamaT KanehisaM. AAindex: Amino acid index database, progress report 2008. Nucleic Acids Res200736DatabaseD202510.1093/nar/gkm99817998252
    [Google Scholar]
  68. KawashimaS. KanehisaM. AAindex: Amino Acid index database.Nucleic Acids Res.2000281374410.1093/nar/28.1.374 10592278
    [Google Scholar]
  69. ChenZ. ZhaoP. LiF. iFeature: A Python package and web server for features extraction and selection from protein and peptide sequences.Bioinformatics201834142499250210.1093/bioinformatics/bty140 29528364
    [Google Scholar]
  70. BlancaM.J. AlarcónR. ArnauJ. BonoR. BendayanR. Non-normal data: Is ANOVA still a valid option?Psicothema201729455255710.7334/psicothema2016.383 29048317
    [Google Scholar]
  71. JungY. ZhangH. HuJ. Transformed low-rank ANOVA models for high-dimensional variable selection.Stat. Methods Med. Res.20192841230124610.1177/0962280217753726 29384042
    [Google Scholar]
  72. TaoZ. LiY. TengZ. ZhaoY. A method for identifying vesicle transport proteins based on LibSVM and MRMD.Comput. Math. Methods Med.202020201910.1155/2020/8926750 33133228
    [Google Scholar]
  73. JiaoS. ZouQ. GuoH. ShiL. iTTCA-RF: A random forest predictor for tumor T cell antigens.J. Transl. Med.202119144910.1186/s12967‑021‑03084‑x 34706730
    [Google Scholar]
  74. ZouQ. ZengJ. CaoL. JiR. A novel features ranking metric with application to scalable visual and bioinformatics data classification.Neurocomputing201617334635410.1016/j.neucom.2014.12.123
    [Google Scholar]
  75. SunA. LiH. DongG. ZhaoY. ZhangD. DBPboost: A method of classification of DNA-binding proteins based on improved differential evolution algorithm and feature extraction.Methods2024223566410.1016/j.ymeth.2024.01.005 38237792
    [Google Scholar]
  76. LeeJ.S. SmithE. The language of histone crosstalk.Cell201014268268510.1016/j.cell.2010.08.011
    [Google Scholar]
  77. DawsonM.A. KouzaridesT. Cancer epigenetics: From mechanism to therapy.Cell2012150122710.1016/j.cell.2012.06.013
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936299646240625092734
Loading
/content/journals/cbio/10.2174/0115748936299646240625092734
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test