Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

The potential of graph neural networks (GNNs) to revolutionize the analysis of non-Euclidean data has gained attention recently, making them attractive models for deep machine learning. However, insufficient compound or molecular graphs and feature representations might significantly impair and jeopardize their full potential. Despite the devastating impacts of ongoing COVID-19 across the globe, for which there is no drug with proven efficacy that has been shown to be effective. As various stages of drug discovery and repositioning require the accurate prediction of drug-target interactions (DTI), here, we propose a relational graph convolution network (RGCN) using multi-features based on the developed drug compound-coronavirus target graph data representation and combination of features. During the implementation of the model, we further introduced the use of not only the feature module to understand the topological structure of drugs but also the structure of the proven drug target (., 3CL) for SARS-CoV-2 that shares a genome sequence similar to that of other members of the betacoronavirus group such as SARS-CoV, MERS-CoV, bat coronavirus. Our feature comprises topological information in molecular SMILES and local chemical context in the SMILES sequence for the drug compound and drug target. Our proposed method prevailed with high and compelling performance accuracy of 97.30% which could be prioritized as the potential and promising prediction route for the development of novel oral antiviral medicine for COVID-19 drugs.

Objective

Forecasting DTI stands as a pivotal aspect of drug discovery. The focus on computational methods in DTI prediction has intensified due to the considerable expense and time investment associated with conducting extensive and experiments. Machine learning (ML) techniques, particularly deep learning, have found broad applications in DTI prediction. We are convinced that this study could be prioritized and utilized as the promising predictive route for the development of novel oral antiviral treatments for COVID-19 and other variants of coronaviruses.

Methods

This study addressed the problem of COVID-19 drugs using proposed RGCN with multi-features as an attractive and potential route. This study focused mainly on the prediction of novel antiviral drugs against coronaviruses using graph-based methodology, namely RGCN. This research further utilized the features of both drugs and common potential drug targets found in betacoronaviruses group to deepen understanding of their underlying relation.

Results

Our suggested approach prevailed with a high and convincing performance accuracy of 97.30%, which may be utilized as a top priority to support and advance this field in the prediction and development of novel antiviral treatments against coronaviruses and their variants.

Conclusion

We recursively performed experiments using the proposed method on our constructed DCC-CvT graph dataset from our collected dataset with various single and multiple combinations of features and found that our model had achieved comparable best-averaged accuracy performance on T7 features followed by a combination of T7, R6, and L8. The proposed model implemented in this investigation turns out to outperform the previous related works.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936280392240219054047
2024-03-08
2025-01-19
Loading full text...

Full text loading...

References

  1. WHONumber of COVID-19 cases reported to WHO.2024Available From: https://covid19.who.int/
  2. SamyA. MaherM.A. AbdelsalamN.A. BadrE. SARS-CoV-2 potential drugs, drug targets, and biomarkers: A viral-host interaction network-based analysis.Sci. Rep.20221211193410.1038/s41598‑022‑15898‑w35831333
    [Google Scholar]
  3. WHOUpdate on omicron.2021Available From: https://www.who.int/news/item/28-11-2021-update-on-
  4. CDC CDTGlobal variants report.2022Available From: https://covid.cdc.gov/covid-data-tracker/
  5. RoyK. Applications of chem-bioinformatic, chemometric and machine learning approaches for COVID-19 related research.Struct. Chem.20223351389139010.1007/s11224‑022‑02005‑y35791421
    [Google Scholar]
  6. PengQ. PengR. YuanB. ZhaoJ. WangM. WangX. WangQ. SunY. FanZ. QiJ. GaoG.F. ShiY. Structural and biochemical characterization of the nsp12-nsp7-nsp8 core polymerase complex from SARS-CoV-2.Cell Rep.2020311110777410.1016/j.celrep.2020.10777432531208
    [Google Scholar]
  7. YadavR. ChaudharyJ.K. JainN. ChaudharyP.K. KhanraS. DhamijaP. SharmaA. KumarA. HanduS. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19.Cells202110482110.3390/cells1004082133917481
    [Google Scholar]
  8. GuptaM. AzumayaC.M. MoritzM. CryoEM and AI reveal a structure of SARS-CoV-2 Nsp2, a multifunctional protein involved in key host processes.bioRxiv20212021.05.10.44352410.1101/2021.05.10.44352434013269
    [Google Scholar]
  9. ArmstrongL.A. LangeS.M. Dee CesareV. MatthewsS.P. NirujogiR.S. ColeI. HopeA. CunninghamF. TothR. MukherjeeR. BojkovaD. GruberF. GrayD. WyattP.G. CinatlJ. DikicI. DaviesP. KulathuY. Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies.PLoS One2021167e025336410.1371/journal.pone.025336434270554
    [Google Scholar]
  10. KhanM.T. ZebM.T. AhsanH. AhmedA. AliA. AkhtarK. MalikS.I. CuiZ. AliS. KhanA.S. AhmadM. WeiD.Q. IrfanM. SARS-CoV-2 nucleocapsid and Nsp3 binding: An in silico study.Arch. Microbiol.20212031596610.1007/s00203‑020‑01998‑632749662
    [Google Scholar]
  11. ChenJ. MaloneB. LlewellynE. GrassoM. SheltonP.M.M. OlinaresP.D.B. MaruthiK. EngE.T. VatandaslarH. ChaitB.T. KapoorT.M. DarstS.A. CampbellE.A. Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex.Cell2020182615601573.e1310.1016/j.cell.2020.07.03332783916
    [Google Scholar]
  12. SprattA.N. GallazziF. QuinnT.P. LorsonC.L. Coronavirus helicases: Attractive and unique targets of antiviral drug-development and therapeutic patents.Expert Opin. Ther. Pat.202131433935010.1080/13543776.2021.188422433593200
    [Google Scholar]
  13. LeiS ChenX WuJ DuanX MenK Small molecules in the treatment of COVID-19.Signal Transduc Target Ther.20227138710.1038/s41392‑022‑01249‑836464706
    [Google Scholar]
  14. LiG. HilgenfeldR. WhitleyR. De ClercqE. Therapeutic strategies for COVID-19: progress and lessons learned.Nat. Rev. Drug Discov.202322644947510.1038/s41573‑023‑00672‑y37076602
    [Google Scholar]
  15. TiwariV. BeerJ.C. SankaranarayananN.V. Swanson-MungersonM. DesaiU.R. Discovering small-molecule therapeutics against SARS-CoV-2.Drug Discov. Today20202581535154410.1016/j.drudis.2020.06.01732574699
    [Google Scholar]
  16. Tahir Ul QamarM. AlqahtaniS.M. AlamriM.A. ChenL.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants.J. Pharm. Anal.202010431331910.1016/j.jpha.2020.03.00932296570
    [Google Scholar]
  17. RoyK. In Silico Modeling of Drugs Against Coronaviruses.(Methods in Pharmacology and Toxicology). Humana New York, NY: Springer 202110.1007/978‑1‑0716‑1366‑5
    [Google Scholar]
  18. ZhangC. SuiY. LiuS. YangM. Anti-viral activity of bioactive molecules of silymarin against COVID-19 via in silico studies.Pharmaceuticals 20231610147910.3390/ph1610147937895950
    [Google Scholar]
  19. WuC. LiuY. YangY. ZhangP. ZhongW. WangY. WangQ. XuY. LiM. LiX. ZhengM. ChenL. LiH. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods.Acta Pharm. Sin. B202010576678810.1016/j.apsb.2020.02.00832292689
    [Google Scholar]
  20. AnandK. ZiebuhrJ. WadhwaniP. MestersJ.R. HilgenfeldR. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs.Science200330056261763176710.1126/science.108565812746549
    [Google Scholar]
  21. NeedleD. LountosG.T. WaughD.S. Structures of the Middle East respiratory syndrome coronavirus 3C-like protease reveal insights into substrate specificity.Acta Crystallogr. D Biol. Crystallogr.201571Pt 51102111110.1107/S139900471500352125945576
    [Google Scholar]
  22. AnandK YangH BartlamM RaoZ HilgenfeldR. Coronavirus main proteinase: Target for antiviral drug therapy. In: Coronaviruses with special emphasis on first insights concerning SARS.20052005173199
    [Google Scholar]
  23. ZhouP. YangX.L. WangX.G. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin.BioRxiv2020202010.1101/2020.01.22.914952
    [Google Scholar]
  24. WuF. ZhaoS. YuB. ChenY.M. WangW. SongZ.G. HuY. TaoZ.W. TianJ.H. PeiY.Y. YuanM.L. ZhangY.L. DaiF.H. LiuY. WangQ.M. ZhengJ.J. XuL. HolmesE.C. ZhangY.Z. A new coronavirus associated with human respiratory disease in China.Nature2020579779826526910.1038/s41586‑020‑2008‑332015508
    [Google Scholar]
  25. LiX.S. LiuX. LuL. HuaX.S. ChiY. XiaK. Multiphysical graph neural network (MP-GNN) for COVID-19 drug design.Brief. Bioinform.2022234bbac23110.1093/bib/bbac23135696650
    [Google Scholar]
  26. GhoshA.K. XiK. RatiaK. SantarsieroB.D. FuW. HarcourtB.H. RotaP.A. BakerS.C. JohnsonM.E. MesecarA.D. Design and synthesis of peptidomimetic severe acute respiratory syndrome chymotrypsin-like protease inhibitors.J. Med. Chem.200548226767677110.1021/jm050548m16250632
    [Google Scholar]
  27. KumarV. TanK.P. WangY.M. LinS.W. LiangP.H. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors.Bioorg. Med. Chem.201624133035304210.1016/j.bmc.2016.05.01327240464
    [Google Scholar]
  28. PillaiyarT. ManickamM. NamasivayamV. HayashiY. JungS.H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy.J. Med. Chem.201659146595662810.1021/acs.jmedchem.5b0146126878082
    [Google Scholar]
  29. HuS. JiangS. QiX. BaiR. YeX.Y. XieT. Races of small molecule clinical trials for the treatment of COVID-19: An up-to-date comprehensive review.Drug Dev. Res.2022831165410.1002/ddr.2189534762760
    [Google Scholar]
  30. WenW. ChenC. TangJ. WangC. ZhouM. ChengY. ZhouX. WuQ. ZhangX. FengZ. WangM. MaoQ. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: A meta-analysis.Ann. Med.202254151652310.1080/07853890.2022.203493635118917
    [Google Scholar]
  31. You may have COVID rebound even without taking Paxlovid. Here are the three symptoms most likely to return, according to one study.2022Available From: https://fortune.com/well/2022/11/17/you-may-havecovid-rebound-even-without-taking-paxlovid-here-arethe-three-symptoms-most-likely-to-return/
  32. RoyK. In silico drug design: Repurposing techniques and methodologies.Academic PressCambridge, Massachusetts2019
    [Google Scholar]
  33. ThafarM.A. AlshahraniM. AlbaradeiS. GojoboriT. EssackM. GaoX. Affinity2Vec: Drug-target binding affinity prediction through representation learning, graph mining, and machine learning.Sci. Rep.2022121475110.1038/s41598‑022‑08787‑935306525
    [Google Scholar]
  34. LinX. DeepGS: Deep representation learning of graphs and sequences for drug-target binding affinity prediction.arXiv:20202020:1390210.48550/arXiv.2003.13902
    [Google Scholar]
  35. LuY. LiuJ. JiangT. CuiZ. WuH. Drug-target binding affinity prediction based on three-branched multiscale convolutional neural networks.Curr. Bioinform.2023181085386210.2174/1574893618666230816090548
    [Google Scholar]
  36. ZhangZ.Y. LiuX.W. MaC.Y. WuY. Identification of secretory proteins in sus scrofa using machine learning method.Curr. Bioinform.2023181078379110.2174/1574893618666230516144641
    [Google Scholar]
  37. LiY. QiaoG. WangK. WangG. Drug-target interaction predication via multi-channel graph neural networks.Brief. Bioinform.2022231bbab34610.1093/bib/bbab34634661237
    [Google Scholar]
  38. LiuQ. WanJ. WangG. A survey on computational methods in discovering protein inhibitors of SARS-CoV-2.Brief. Bioinform.2022231bbab41610.1093/bib/bbab41634623382
    [Google Scholar]
  39. HeY. ShenZ. ZhangQ. WangS. HuangD.S. A survey on deep learning in DNA/RNA motif mining.Brief. Bioinform.2021224bbaa22910.1093/bib/bbaa22933005921
    [Google Scholar]
  40. WangL. YouZ.H. HuangY.A. HuangD.S. ChanK.C.C. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network. Bioinformatics202036134038404610.1093/bioinformatics/btz82531793982
    [Google Scholar]
  41. WangL. YouZ.H. HuangD.S. ZhouF. Combining high speed ELM learning with a deep convolutional neural network feature encoding for predicting protein-RNA interactions.IEEE/ACM Trans. Comput. Biol. Bioinformatics202017397298010.1109/TCBB.2018.287426730296240
    [Google Scholar]
  42. WenM. ZhangZ. NiuS. ShaH. YangR. YunY. LuH. Deep-learning-based drug-target interaction prediction.J. Proteome Res.20171641401140910.1021/acs.jproteome.6b0061828264154
    [Google Scholar]
  43. AbbasiK. RazzaghiP. PosoA. Ghanbari-AraS. Masoudi-NejadA. Deep learning in drug target interaction prediction: Current and future perspectives.Curr. Med. Chem.202128112100211310.2174/1875533XMTA5qNzU6232895036
    [Google Scholar]
  44. YangZ. BaiB. LongJ. WeiP. LiJ. Multi-scale Feature Fusion Neural Network for Accurate Prediction of DrugTarget Interactions.Neural Information Processing ICONIP 2023 Communications in Computer and Information Science, Springer, Singapore2023196410.1007/978‑981‑99‑8141‑0_14
    [Google Scholar]
  45. WangS. JiangM. ZhangS. WangX. YuanQ. WeiZ. LiZ. MCN-CPI: Multiscale convolutional network for compound-protein interaction prediction.Biomolecules2021118111910.3390/biom1108111934439785
    [Google Scholar]
  46. YangZ. ZhongW. ZhaoL. Yu-Chian ChenC. MGraphDTA: Deep multiscale graph neural network for explainable drug-target binding affinity prediction.Chem. Sci. 202213381683310.1039/D1SC05180F35173947
    [Google Scholar]
  47. MonteiroN.R.C. OliveiraJ.L. ArraisJ.P. DTITR: End-to-end drug-target binding affinity prediction with transformers.Comput. Biol. Med.202214710577210.1016/j.compbiomed.2022.10577235777085
    [Google Scholar]
  48. JungL.S. ChoY.R. Survey of network-based approaches of drugtarget interaction prediction.2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)Seoul, Korea (South),20201793179610.1109/BIBM49941.2020.9313222
    [Google Scholar]
  49. KimS. BaeS. PiaoY. JoK. Graph convolutional network for drug response prediction using gene expression data.Mathematics20219777210.3390/math9070772
    [Google Scholar]
  50. LiS. ZhouJ. XuT. Structure-aware interactive graph neural networks for the prediction of protein-ligand binding affinity.arXiv2021 20211067010.48550/arXiv.2107.10670
    [Google Scholar]
  51. NguyenT. LeH. QuinnT.P. NguyenT. LeT.D. VenkateshS. GraphDTA: Predicting drug-target binding affinity with graph neural networks.Bioinformatics20213781140114710.1093/bioinformatics/btaa92133119053
    [Google Scholar]
  52. JiangM. LiZ. ZhangS. WangS. WangX. YuanQ. WeiZ. Drug-target affinity prediction using graph neural network and contact maps.RSC Advances20201035207012071210.1039/D0RA02297G35517730
    [Google Scholar]
  53. WangX. LiuY. LuF. LiH. GaoP. WeiD. Dipeptide frequency of word frequency and graph convolutional networks for DTA prediction.Front. Bioeng. Biotechnol.2020826710.3389/fbioe.2020.0026732318557
    [Google Scholar]
  54. LiuX. LuoY. LiP. SongS. PengJ. Deep geometric representations for modeling effects of mutations on protein-protein binding affinity.PLOS Comput. Biol.2021178e100928410.1371/journal.pcbi.100928434347784
    [Google Scholar]
  55. StokesJ.M. YangK. SwansonK. JinW. Cubillos-RuizA. DonghiaN.M. MacNairC.R. FrenchS. CarfraeL.A. Bloom-AckermannZ. TranV.M. Chiappino-PepeA. BadranA.H. AndrewsI.W. ChoryE.J. ChurchG.M. BrownE.D. JaakkolaT.S. BarzilayR. CollinsJ.J. A deep learning approach to antibiotic discovery.Cell20201804688702.e1310.1016/j.cell.2020.01.02132084340
    [Google Scholar]
  56. KipfT.N. WellingM. Semi-supervised classification with graph convolutional networks.arXiv201620260190710.48550/arXiv.1609.02907
    [Google Scholar]
  57. WuF. SouzaA. ZhangT. FiftyC. YuT. WeinbergerK. Simplifying graph convolutional networks.arXiv201920190715310.48550/arXiv.1902.07153
    [Google Scholar]
  58. MswahiliM.E. HwangJ. JeongY.S. KimY. Graph Neural Network Models for Chemical Compound Activeness Prediction ForCOVID-19 Drugs Discovery using Lipinski’s Descriptors.2022 5th International Conference on Artificial Intelligence for Industries (AI4I).Laguna Hills, CA, USA2022202110.1109/AI4I54798.2022.00011
    [Google Scholar]
  59. SchlichtkrullM. KipfT. BloemP. BergRVD. TitovI. WellingM. Modeling Relational Data with Graph Convolutional NetworksIn: The Semantic Web ESWC 2018 Lecture Notes in Computer Science Cham: Springer 20181084359360710.1007/978‑3‑319‑93417‑4_38
    [Google Scholar]
  60. ThanapalasingamT. van BerkelL. BloemP. GrothP. Relational graph convolutional networks: A closer look.PeerJ Comput. Sci.20228e107310.7717/peerj‑cs.107336426239
    [Google Scholar]
  61. ChEMBLAvailable From: https://www.ebi.ac.uk/ chembl/
  62. MoriwakiH TianYS KawashitaN TakagiT Mordred: A molecular descriptor calculator.J Cheminform.201861410.1186/s13321‑018‑0258‑y
    [Google Scholar]
  63. RDKitOpen-Source Cheminformatics Software.2022Available From: http://www.rdkit.org
  64. DeepChemThe DeepChem Project.2022Available From: https: //deepchem.readthedocs.io/en/latest/api_reference/ featurizers.html
  65. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.20126441710.1016/j.addr.2012.09.01911259830
    [Google Scholar]
  66. LipinskiC.A. Leadand drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.00724981612
    [Google Scholar]
  67. ZhouJ. CuiG. HuS. Graph neural networks: A review of methods and applicationsAI Open20201578110.1016/j.aiopen.2021.01.001
    [Google Scholar]
  68. HuZ. DongY. WangK. SunY. Heterogeneous graph transformer.Proceedings of The Web Conference 2020 (WWW '20)Association for Computing Machinery,. New York, NY, USA20202704271010.1145/3366423.3380027
    [Google Scholar]
  69. JuW. FangZ. GuY. A comprehensive survey on deep graph representation learningarXiv202320230505510.48550/arXiv.2304.05055
    [Google Scholar]
  70. PyTorchCreating message passing networks.2024Available From: https://pytorch-geometric.readthedocs.io/en/ latest/notes/create_gnn.html
  71. FeyM. LenssenJ.E. Fast graph representation learning with PyTorch Geometric.arXiv201920190242810.48550/arXiv.1903.02428
    [Google Scholar]
  72. TharwatA. Classification assessment methods.Appl. Comput. Inf.202017116819210.1016/j.aci.2018.08.003
    [Google Scholar]
  73. ParikhR. MathaiA. ParikhS. Chandra SekharG. ThomasR. Understanding and using sensitivity, specificity and predictive values.Indian J. Ophthalmol.2008561455010.4103/0301‑4738.3759518158403
    [Google Scholar]
  74. MonaghanT.F. RahmanS.N. AgudeloC.W. WeinA.J. LazarJ.M. EveraertK. DmochowskiR.R. Foundational statistical principles in medical research: Sensitivity, specificity, positive predictive value, and negative predictive value.Medicina 202157550310.3390/medicina5705050334065637
    [Google Scholar]
  75. De DiegoI.M. RedondoA.R. FernandezR.R. NavarroJ. MoguerzaJ.M. General performance score for classification problems.Appl. Intell.20225210120491206310.1007/s10489‑021‑03041‑7
    [Google Scholar]
  76. PubChemCarmofur | C11H16FN3O3.2024Available From: https://pubchem. ncbi.nlm.nih.gov/compound/2577
  77. PubChemBenserazide | C10H15N3O5.2024Available From: https:// pubchem.ncbi.nlm.nih.gov/compound/2327
  78. ZhouK. DongY. WangK. Understanding and Resolving Performance Degradation in Deep Graph Convolutional NetworksProceedings of the 30th ACM International Conference on Information & Knowledge Management (CIKM '21)Association for Computing Machinery, New York, NY, USA20212728273710.1145/3459637.3482488
    [Google Scholar]
  79. LiG. MullerM. ThabetA. GhanemB. DeepGCNs: Can GCNs Go As Deep As CNNs?2019 IEEE/CVF International Conference on Computer Vision (ICCV) ,. Seoul, Korea (South), 201920199266927510.1109/ICCV.2019.00936
    [Google Scholar]
  80. RongY. HuangW. XuT. HuangJ. Dropedge: Towards deep graph convolutional networks on node classification.arXiv201920191090310.48550/arXiv.1907.10903
    [Google Scholar]
  81. LiQ. HanZ. WuXM. Deeper insights into graph convolutional networks for semi-supervised learningarXiv201820180760610.48550/arXiv.1801.07606
    [Google Scholar]
  82. LiG. XiongC. ThabetA. GhanemB. DeeperGCN: All you need to train deeper GCNsarXiv202020200773910.48550/arXiv.2006.07739
    [Google Scholar]
  83. DietterichTG. Ensemble Methods in Machine LearningMultiple Classifier Systems MCS 2000 Lecture Notes in Computer Science185711510.1007/3‑540‑45014‑9_1
    [Google Scholar]
  84. Machine Learning MasteryA gentle introduction to ensemble learning algorithms.2021Available From: https://machinelearningmastery. com/tour-of-ensemble-learning-algorithms/
  85. PanovP. Encyclopedia of Complexity and Systems Science.SpringerBerlin200910.1007/978‑0‑387‑30440‑3_315
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936280392240219054047
Loading
/content/journals/cbio/10.2174/0115748936280392240219054047
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test