Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Recent evidence demonstrated the fundamental role of miRNAs as disease biomarkers and their role in disease progression and pathology. Identifying disease related miRNAs using computational approaches has become one of the trending topics in health informatics. Many biological databases and online tools were developed for uncovering novel disease-related miRNAs. Hence, a brief overview regarding the disease biomarkers, miRNAs as disease biomarkers and their role in complex disorders is given here. Various methods for calculating miRNA and disease similarities are included and the existing machine learning and network based computational approaches for detecting disease associated miRNAs are reviewed along with the benchmark dataset used. Finally, the performance matrices, validation measures and online tools used for miRNA Disease Association (MDA) predictions are also outlined.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936293219240426051148
2024-05-20
2025-05-08
Loading full text...

Full text loading...

References

  1. ConsidineE.C. The search for clinically useful biomarkers of complex disease: a data analysis perspective.Metabolites20199712610.3390/metabo907012631269649
    [Google Scholar]
  2. WatsonC.N. BelliA. Di PietroV. Small non-coding rnas: new class of biomarkers and potential therapeutic targets in neurodegenerative disease.Front. Genet.20191036410.3389/fgene.2019.0036431080456
    [Google Scholar]
  3. YanC. ZhangZ. BaoS. HouP. ZhouM. XuC. SunJ. Computational methods and applications for identifying disease-associated lncrnas as potential biomarkers and therapeutic targets.Mol. Ther. Nucleic Acids20202115617110.1016/j.omtn.2020.05.01832585624
    [Google Scholar]
  4. LopezJ.P. DialloA. CruceanuC. FioriL.M. LaboissiereS. GuilletI. FontaineJ. RagoussisJ. BenesV. TureckiG. ErnstC. Biomarker discovery: quantification of microRNAs and other small non-coding RNAs using next generation sequencing.BMC Med. Genomics2015813510.1186/s12920‑015‑0109‑x26130076
    [Google Scholar]
  5. SiW. ShenJ. ZhengH. FanW. The role and mechanisms of action of microRNAs in cancer drug resistance.Clin. Epigenetics20191112510.1186/s13148‑018‑0587‑830744689
    [Google Scholar]
  6. LeclercqM. DialloA.B. BlanchetteM. Computational prediction of the localization of microRNAs within their pre-miRNA.Nucleic Acids Res.201341157200721110.1093/nar/gkt46623748953
    [Google Scholar]
  7. CalinG.A. SevignaniC. DumitruC.D. HyslopT. NochE. YendamuriS. ShimizuM. RattanS. BullrichF. NegriniM. CroceC.M. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc. Natl. Acad. Sci. USA200410192999300410.1073/pnas.030732310114973191
    [Google Scholar]
  8. XieX. WangY. HeK. ShengN. Predicting miRNA-disease associations based on PPMI and attention network.BMC Bioinformatics202324111310.1186/s12859‑023‑05152‑z36959547
    [Google Scholar]
  9. ChenX. XieD. ZhaoQ. YouZ.H. MicroRNAs and complex diseases: from experimental results to computational models.Brief. Bioinform.201920251553910.1093/bib/bbx13029045685
    [Google Scholar]
  10. LiaoQ. YeY. LiZ. ChenH. ZhuoL. Prediction of miRNA-disease associations in microbes based on graph convolutional networks and autoencoders.Front. Microbiol.202314117055910.3389/fmicb.2023.117055937187536
    [Google Scholar]
  11. SpataroN. RodríguezJ.A. NavarroA. BoschE. Properties of human disease genes and the role of genes linked to Mendelian disorders in complex disease aetiology.Hum. Mol. Genet.2017263ddw40510.1093/hmg/ddw40528053046
    [Google Scholar]
  12. BartelD.P. MicroRNAs.Cell2004116228129710.1016/S0092‑8674(04)00045‑514744438
    [Google Scholar]
  13. GaoS. KuangZ. DuanT. DengL. DEJKMDR: miRNA-disease association prediction method based on graph convolutional network.Front. Med.202310123405010.3389/fmed.2023.123405037780568
    [Google Scholar]
  14. Moreno-MoyaJ.M. VilellaF. SimónC. MicroRNA: key gene expression regulators.Fertil. Steril.201410161516152310.1016/j.fertnstert.2013.10.04224314918
    [Google Scholar]
  15. GangarajuV.K. LinH. MicroRNAs: key regulators of stem cells.Nat. Rev. Mol. Cell Biol.200910211612510.1038/nrm262119165214
    [Google Scholar]
  16. O’BrienJ. HayderH. ZayedY. PengC. Overview of microrna biogenesis, mechanisms of actions, and circulation.Front. Endocrinol.2018940210.3389/fendo.2018.0040230123182
    [Google Scholar]
  17. AnneseT. TammaR. De GiorgisM. RibattiD. microRNAs biogenesis, functions and role in tumor angiogenesis.Front. Oncol.20201058100710.3389/fonc.2020.58100733330058
    [Google Scholar]
  18. HussenB.M. HidayatH.J. SalihiA. SabirD.K. TaheriM. Ghafouri-FardS. MicroRNA: A signature for cancer progression.Biomed. Pharmacother.202113811152810.1016/j.biopha.2021.11152833770669
    [Google Scholar]
  19. VoliniaS. CalinG.A. LiuC.G. AmbsS. CimminoA. PetroccaF. VisoneR. IorioM. RoldoC. FerracinM. PrueittR.L. YanaiharaN. LanzaG. ScarpaA. VecchioneA. NegriniM. HarrisC.C. CroceC.M. A microRNA expression signature of human solid tumors defines cancer gene targets.Proc. Natl. Acad. Sci. USA200610372257226110.1073/pnas.051056510316461460
    [Google Scholar]
  20. SujamolS. ViminaE.R. KrishnakumarU. Improving recurrence prediction accuracy of ovarian cancer using multi-phase feature selection methodology.Appl. Artif. Intell.202135320622610.1080/08839514.2020.1854988
    [Google Scholar]
  21. MatsuyamaH. SuzukiH.I. Systems and synthetic microRNA biology: From biogenesis to disease pathogenesis.Int. J. Mol. Sci.201921113210.3390/ijms2101013231878193
    [Google Scholar]
  22. OtmaniK. LewalleP. Tumor suppressor mirna in cancer cells and the tumor microenvironment: mechanism of deregulation and clinical implications.Front. Oncol.20211170876510.3389/fonc.2021.70876534722255
    [Google Scholar]
  23. ZhangB. PanX. CobbG.P. AndersonT.A. microRNAs as oncogenes and tumor suppressors.Dev. Biol.2007302111210.1016/j.ydbio.2006.08.02816989803
    [Google Scholar]
  24. CalinG.A. CroceC.M. MicroRNA signatures in human cancers.Nat. Rev. Cancer200661185786610.1038/nrc199717060945
    [Google Scholar]
  25. LinS. GregoryR.I. MicroRNA biogenesis pathways in cancer.Nat. Rev. Cancer201515632133310.1038/nrc393225998712
    [Google Scholar]
  26. KimJ. YaoF. XiaoZ. SunY. MaL. MicroRNAs and metastasis: small RNAs play big roles.Cancer Metastasis Rev.201837151510.1007/s10555‑017‑9712‑y29234933
    [Google Scholar]
  27. MaJ. DongC. JiC. MicroRNA and drug resistance.Cancer Gene Ther.201017852353110.1038/cgt.2010.1820467450
    [Google Scholar]
  28. MageeP. ShiL. GarofaloM. Role of microRNAs in chemoresistance.Ann. Transl. Med.201532133210.3978/j.issn.2305‑5839.2015.11.3226734642
    [Google Scholar]
  29. SunJ. XuM. RuJ. James-BottA. XiongD. WangX. CribbsA.P. Small molecule-mediated targeting of microRNAs for drug discovery: Experiments, computational techniques, and disease implications.Eur. J. Med. Chem.202325711550010.1016/j.ejmech.2023.11550037262996
    [Google Scholar]
  30. SatoH. HaraT. MengS. TsujiY. AraoY. SasakiK. MiyoshiN. KobayashiS. DokiY. EguchiH. IshiiH. Drug discovery and development of mirna-based nucleotide drugs for gastrointestinal cancer.Biomedicines2023118223510.3390/biomedicines1108223537626731
    [Google Scholar]
  31. ArshadiA. K. SalemM. KarnerH. GarciaK. ArabA. YuanJ. S. GoodarziH. Functional microRNA-targeting drug discovery by graph-based deep learning.Patterns20245110090910.1016/j.patter.2023.10090938264717
    [Google Scholar]
  32. HeS.L. GreenR. Northern blotting.Methods Enzymol.2013530758710.1016/B978‑0‑12‑420037‑1.00003‑824034315
    [Google Scholar]
  33. KaliyappanK. GovindarajanR. DuraiyanJ. PalanisamyM. Microarray and its applications.J. Pharm. Bioallied Sci.201246Suppl. 231010.4103/0975‑7406.10028323066278
    [Google Scholar]
  34. SiddikaT. HeinemannI.U. Bringing MicroRNAs to light: methods for MicroRNA quantification and visualization in live cells.Front. Bioeng. Biotechnol.2021861958310.3389/fbioe.2020.61958333537295
    [Google Scholar]
  35. LiG. BaiP. ChenJ. LiangC. Identifying virulence factors using graph transformer autoencoder with ESMFold-predicted structures.Comput. Biol. Med.202417010806210.1016/j.compbiomed.2024.10806238308869
    [Google Scholar]
  36. LiG. LuoJ. WangD. LiangC. XiaoQ. DingP. ChenH. Potential circRNA-disease association prediction using DeepWalk and network consistency projection.J. Biomed. Inform.202011210362410.1016/j.jbi.2020.10362433217543
    [Google Scholar]
  37. LiG. LuoJ. XiaoQ. LiangC. DingP. Predicting microRNA-disease associations using label propagation based on linear neighborhood similarity.J. Biomed. Inform.20188216917710.1016/j.jbi.2018.05.00529763707
    [Google Scholar]
  38. LiG. BaiP. LiangC. LuoJ. Node-adaptive graph Transformer with structural encoding for accurate and robust lncRNA-disease association prediction.BMC Genomics20242517310.1186/s12864‑024‑09998‑238233788
    [Google Scholar]
  39. LeeR.C. FeinbaumR.L. AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell199375584385410.1016/0092‑8674(93)90529‑Y8252621
    [Google Scholar]
  40. PasquierC. GardèsJ. Prediction of miRNA-disease associations with a vector space model.Sci. Rep.2016612703610.1038/srep2703627246786
    [Google Scholar]
  41. WangD. WangJ. LuM. SongF. CuiQ. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases.Bioinformatics201026131644165010.1093/bioinformatics/btq24120439255
    [Google Scholar]
  42. LiX. LinY. GuC. YangJ. FCMDAP: using miRNA family and cluster information to improve the prediction accuracy of disease related miRNAs.BMC Syst. Biol.201913S2Suppl. 22610.1186/s12918‑019‑0696‑930953512
    [Google Scholar]
  43. JiangL. DingY. TangJ. GuoF. MDA-SKF: Similarity kernel fusion for accurately discovering miRNA-disease association.Front. Genet.2018961810.3389/fgene.2018.0061830619454
    [Google Scholar]
  44. LiL. GaoZ. WangY.T. ZhangM.W. NiJ.C. ZhengC.H. SuY. SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization.PLOS Comput. Biol.2021177e100916510.1371/journal.pcbi.100916534252084
    [Google Scholar]
  45. LiH.Y. YouZ.H. WangL. YanX. LiZ.W. DF-MDA: An effective diffusion-based computational model for predicting miRNA-disease association.Mol. Ther.20212941501151110.1016/j.ymthe.2021.01.00333429082
    [Google Scholar]
  46. CheK. GuoM. WangC. LiuX. ChenX. Predicting MiRNA-disease association by latent feature extraction with positive samples.Genes (Basel)20191028010.3390/genes1002008030682853
    [Google Scholar]
  47. ZhengK. YouZ.H. WangL. ZhouY. LiL.P. LiZ.W. DBMDA: A unified embedding for sequence-based miRNA similarity measure with applications to predict and validate miRNA-disease associations.Mol. Ther. Nucleic Acids20201960261110.1016/j.omtn.2019.12.01031931344
    [Google Scholar]
  48. NeedlemanS.B. WunschC.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins.J. Mol. Biol.197048344345310.1016/0022‑2836(70)90057‑45420325
    [Google Scholar]
  49. SalmelaL. WalveR. RivalsE. UkkonenE. Accurate self correction of errors in long reads using de Bruijn graphs.Bioinformatics201733679980610.1093/bioinformatics/btw32127273673
    [Google Scholar]
  50. SteineggerM. SödingJ. Clustering huge protein sequence sets in linear time.Nat. Commun.201891254210.1038/s41467‑018‑04964‑529959318
    [Google Scholar]
  51. PatroR. MountS.M. KingsfordC. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms.Nat. Biotechnol.201432546246410.1038/nbt.286224752080
    [Google Scholar]
  52. HozzaM. VinařT. BrejováB. How big is that genome? Estimating genome size and coverage from k-mer abundance spectra.String Processing and Information Retrieval (SPIRE) IliopoulosC. Lecture Notes on Computer ScienceSpringer International PublishingCham, Switzerland2015930919920910.1007/978‑3‑319‑23826‑5_20
    [Google Scholar]
  53. ChorB. HornD. GoldmanN. LevyY. MassinghamT. Genomic DNA k-mer spectra: models and modalities.Genome Biol.20091010R10810.1186/gb‑2009‑10‑10‑r10819814784
    [Google Scholar]
  54. WangY. FuL. RenJ. YuZ. ChenT. SunF. Identifying group-specific sequences for microbial communities using long k-mer sequence signatures.Front. Microbiol.2018987287210.3389/fmicb.2018.0087229774017
    [Google Scholar]
  55. BergerB. WatermanM.S. YuY.W. Levenshtein distance, sequence comparison and biological database search.IEEE Trans. Inf. Theory20216763287329410.1109/TIT.2020.299654334257466
    [Google Scholar]
  56. JosephJ. SasikumarR. Chaos game representation for comparison of whole genomes.BMC Bioinformatics20067124310.1186/1471‑2105‑7‑24316677374
    [Google Scholar]
  57. HoangT. YinC. YauS.S.T. Numerical encoding of DNA sequences by chaos game representation with application in similarity comparison.Genomics20161083-413414210.1016/j.ygeno.2016.08.00227538895
    [Google Scholar]
  58. BargajeR. HariharanM. ScariaV. PillaiB. Consensus miRNA expression profiles derived from interplatform normalization of microarray data.RNA2010161162510.1261/rna.168811019948767
    [Google Scholar]
  59. YonaG. DirksW. RahmanS. LinD.M. Effective similarity measures for expression profiles.Bioinformatics200622131616162210.1093/bioinformatics/btl12716595558
    [Google Scholar]
  60. ResnikP. Semantic similarity in a taxonomy: An informationbased measure and its application to problems of ambiguity in natural language.J. Artif. Intell. Res.1999119513010.1613/jair.514
    [Google Scholar]
  61. LinD. An information-theoretic definition of similarity.Icml1998981988
    [Google Scholar]
  62. JiangJay J. ConrathDavid W. Semantic similarity based on corpus statistics and lexical taxonomy.arXiv 9709008199710.48550/arXiv.cmp‑lg/9709008
    [Google Scholar]
  63. SchlickerA. DominguesF.S. RahnenführerJ. LengauerT. A new measure for functional similarity of gene products based on Gene Ontology.BMC Bioinformatics20067130210.1186/1471‑2105‑7‑30216776819
    [Google Scholar]
  64. PesquitaC. FariaD. BastosH.P. FalcãoA.O. CoutoF.M. Evaluating GO based semantic similarity measures.Proc 10th Annual Bio-Ontologies Meeting.2007
    [Google Scholar]
  65. LiB. LuoF. WangJ.Z. FeltusF.A. ZhouJ. Effectively integrating information content and structural relationship to improve the go-based similarity measure between proteins.Genomics201010.48550/arXiv.1001.0958
    [Google Scholar]
  66. WangJ.Z. DuZ. PayattakoolR. YuP.S. ChenC.F. A new method to measure the semantic similarity of GO terms.Bioinformatics200723101274128110.1093/bioinformatics/btm08717344234
    [Google Scholar]
  67. ChengL. LiJ. JuP. PengJ. WangY. SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association.PLoS One201496e9941510.1371/journal.pone.009941524932637
    [Google Scholar]
  68. MencheJ. SharmaA. KitsakM. GhiassianS.D. VidalM. LoscalzoJ. BarabásiA.L. Uncovering disease-disease relationships through the incomplete interactome.Science20153476224125760110.1126/science.125760125700523
    [Google Scholar]
  69. MathurS. DinakarpandianD. Automated ontological gene annotation for computing disease similarity.Summit On Translat. Bioinforma.20102010121621347137
    [Google Scholar]
  70. PaikH. HeoH.S. BanH. ChoS.B. Unraveling human protein interaction networks underlying co-occurrences of diseases and pathological conditions.J. Transl. Med.20141219910.1186/1479‑5876‑12‑9924731539
    [Google Scholar]
  71. ChenX. LiuM.X. YanG.Y. RWRMDA: predicting novel human microRNA–disease associations.Mol. Biosyst.20128102792279810.1039/c2mb25180a22875290
    [Google Scholar]
  72. XuanP. HanK. GuoY. LiJ. LiX. ZhongY. ZhangZ. DingJ. Prediction of potential disease associated microRNAs based on random walk.Bioinformatics201531111805181510.1093/bioinformatics/btv03925618864
    [Google Scholar]
  73. LuoJ. XiaoQ. A novel approach for predicting microRNA-disease associations by unbalanced bi-random walk on heterogeneous network.J. Biomed. Inform.20176619420310.1016/j.jbi.2017.01.00828104458
    [Google Scholar]
  74. NiuY.W. WangG.H. YanG.Y. ChenX. Integrating random walk and binary regression to identify novel miRNA-disease association.BMC Bioinformatics20192015910.1186/s12859‑019‑2640‑930691413
    [Google Scholar]
  75. JiB.Y. YouZ.H. ChengL. ZhouJ.R. AlghazzawiD. LiL.P. Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model.Sci. Rep.2020101665810.1038/s41598‑020‑63735‑932313121
    [Google Scholar]
  76. NguyenV.T. LeT.T.K. ThanK. TranD.H. Predicting miRNA–disease associations using improved random walk with restart and integrating multiple similarities.Sci. Rep.20211112107110.1038/s41598‑021‑00677‑w34702958
    [Google Scholar]
  77. LiA. DengY. TanY. ChenM. A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method.PLoS One2021166e025297110.1371/journal.pone.025297134138933
    [Google Scholar]
  78. YouZ.H. HuangZ.A. ZhuZ. YanG.Y. LiZ.W. WenZ. ChenX. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction.PLOS Comput. Biol.2017133e100545510.1371/journal.pcbi.100545528339468
    [Google Scholar]
  79. LiuM. YangJ. WangJ. DengL. Predicting miRNA-disease associations using a hybrid feature representation in the heterogeneous network.BMC Med. Genomics202013S10Suppl. 1015310.1186/s12920‑020‑00783‑033087118
    [Google Scholar]
  80. QuY. ZhangH. LiangC. DongX. KATZMDA: Prediction of MiRNA-disease associations based on KATZ model.IEEE Access201863943395010.1109/ACCESS.2017.2754409
    [Google Scholar]
  81. ChenX. WangL. QuJ. GuanN.N. LiJ.Q. Predicting miRNA–disease association based on inductive matrix completion.Bioinformatics201834244256426510.1093/bioinformatics/bty50329939227
    [Google Scholar]
  82. HaJ. ParkC. ParkS. PMAMCA: prediction of microRNA-disease association utilizing a matrix completion approach.BMC Syst. Biol.20191313310.1186/s12918‑019‑0700‑430894171
    [Google Scholar]
  83. HaJ. ParkC. ParkC. ParkS. Improved prediction of miRNA disease associations based on matrix completion with network regularization.Cells20209488110.3390/cells904088132260218
    [Google Scholar]
  84. WangL. ChenY. ZhangN. ChenW. ZhangY. GaoR. QIMCMDA: MiRNA-disease association prediction by q-kernel information and matrix completion.Front. Genet.20201159479610.3389/fgene.2020.59479633193744
    [Google Scholar]
  85. DingY. WangF. LeiX. LiaoB. WuF.X. Deep belief network–based matrix factorization model for microRNA-disease associations prediction.Evol. Bioinform. Online20201610.1177/117693432091970732523330
    [Google Scholar]
  86. ZhengX. ZhangC. WanC. MiRNA-Disease association prediction via non-negative matrix factorization based matrix completion.Signal Processing202219010831210.1016/j.sigpro.2021.108312
    [Google Scholar]
  87. LiG. YueY. LiangC. XiaoQ. DingP. LuoJ. NCPCDA: network consistency projection for circRNA–disease association prediction.RSC Advances2019957332223322810.1039/C9RA06133A35529153
    [Google Scholar]
  88. LeiX. FangZ. ChenL. WuF.X. PWCDA: path weighted method for predicting circRNA-disease associations.Int. J. Mol. Sci.20181911341010.3390/ijms1911341030384427
    [Google Scholar]
  89. FanC. LeiX. WuF.X. Prediction of CircRNA-disease associations using KATZ model based on heterogeneous networks.Int. J. Biol. Sci.201814141950195910.7150/ijbs.2826030585259
    [Google Scholar]
  90. HuangY.A. YouZ.H. LiL.P. HuangZ.A. XiangL.X. LiX.F. LvL.T. EPMDA: an expression-profile based computational model for microRNA-disease association prediction.Oncotarget2017850870338704310.18632/oncotarget.1878829152061
    [Google Scholar]
  91. FuL. PengQ. A deep ensemble model to predict miRNA-disease association.Sci. Rep.2017711448210.1038/s41598‑017‑15235‑629101378
    [Google Scholar]
  92. ChenX. GongY. ZhangD.H. YouZ.H. LiZ.W. DRMDA: deep representations‐based miRNA–disease association prediction.J. Cell. Mol. Med.201822147248510.1111/jcmm.1333628857494
    [Google Scholar]
  93. ChenX. WangC.C. YinJ. YouZ.H. Novel human miRNA-disease association inference based on random forest.Mol. Ther. Nucleic Acids20181356857910.1016/j.omtn.2018.10.00530439645
    [Google Scholar]
  94. ZengX. WangW. DengG. BingJ. ZouQ. Prediction of potential disease-associated microRNAs by using neural networks.Mol. Ther. Nucleic Acids20191656657510.1016/j.omtn.2019.04.01031077936
    [Google Scholar]
  95. ChenX. ZhuC.C. YinJ. Ensemble of decision tree reveals potential miRNA-disease associations.PLOS Comput. Biol.2019157e100720910.1371/journal.pcbi.100720931329575
    [Google Scholar]
  96. ZhangL. ChenX. YinJ. Prediction of potential miRNA–Disease associations through a novel unsupervised deep learning framework with variational autoencoder.Cells201989104010.3390/cells809104031489920
    [Google Scholar]
  97. ZhengK. YouZ.H. WangL. ZhouY. LiL.P. LiZ.W. MLMDA: a machine learning approach to predict and validate MicroRNA–disease associations by integrating of heterogenous information sources.J. Transl. Med.201917126010.1186/s12967‑019‑2009‑x31395072
    [Google Scholar]
  98. JiC. GaoZ. MaX. WuQ. NiJ. ZhengC. AEMDA: inferring miRNA–disease associations based on deep autoencoder.Bioinformatics2021371667210.1093/bioinformatics/btaa67032726399
    [Google Scholar]
  99. LiuD. HuangY. NieW. ZhangJ. DengL. SMALF: miRNA-disease associations prediction based on stacked autoencoder and XGBoost.BMC Bioinformatics202122121910.1186/s12859‑021‑04135‑233910505
    [Google Scholar]
  100. GuoR. ChenH. WangW. WuG. LvF. Predicting potential miRNA-disease associations based on more reliable negative sample selection.BMC Bioinformatics202223143210.1186/s12859‑022‑04978‑336253735
    [Google Scholar]
  101. CuiC. ZhongB. FanR. CuiQ. HMDD v4.0: a database for experimentally supported human microRNA-disease associations.Nucleic Acids Res.202452D1D1327D133210.1093/nar/gkad71737650649
    [Google Scholar]
  102. LiJ. ZhangS. WanY. ZhaoY. ShiJ. ZhouY. CuiQ. MISIM v2.0: a web server for inferring microRNA functional similarity based on microRNA-disease associations.Nucleic Acids Res.201947W1W536W54110.1093/nar/gkz32831069374
    [Google Scholar]
  103. XieB. DingQ. HanH. WuD. miRCancer: a microRNA–cancer association database constructed by text mining on literature.Bioinformatics201329563864410.1093/bioinformatics/btt01423325619
    [Google Scholar]
  104. JiangQ. WangY. HaoY. JuanL. TengM. ZhangX. LiM. WangG. LiuY. miR2Disease: a manually curated database for microRNA deregulation in human disease.Nucleic Acids Res.200937DatabaseD98D10410.1093/nar/gkn71418927107
    [Google Scholar]
  105. XuF. WangY. LingY. ZhouC. WangH. TeschendorffA.E. ZhaoY. ZhaoH. HeY. ZhangG. YangZ. dbDEMC 3.0: Functional exploration of differentially expressed miRNAs in cancers of human and model organisms.Genomics Proteomics Bioinformatics202220344645410.1016/j.gpb.2022.04.00635643191
    [Google Scholar]
  106. Griffiths-JonesS. GrocockR.J. van DongenS. BatemanA. EnrightA.J. miRBase: microRNA sequences, targets and gene nomenclature.Nucleic Acids Res.20063490001D140D14410.1093/nar/gkj11216381832
    [Google Scholar]
  107. PanwarB. OmennG.S. GuanY. miRmine: a database of human miRNA expression profiles.Bioinformatics201733101554156010.1093/bioinformatics/btx01928108447
    [Google Scholar]
  108. BaronJ.A. JohnsonC.S.B. SchorM.A. OlleyD. NickelL. FelixV. MunroJ.B. BelloS.M. BearerC. LichensteinR. BisordiK. KokaR. GreeneC. SchrimlL.M. The DO-KB Knowledgebase: a 20-year journey developing the disease open science ecosystem.Nucleic Acids Res.202452D1D1305D131410.1093/nar/gkad105137953304
    [Google Scholar]
  109. CeramiE. GaoJ. DogrusozU. GrossB.E. SumerS.O. AksoyB.A. JacobsenA. ByrneC.J. HeuerM.L. LarssonE. AntipinY. RevaB. GoldbergA.P. SanderC. SchultzN. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.Cancer Discov.20122540140410.1158/2159‑8290.CD‑12‑009522588877
    [Google Scholar]
  110. VasaikarS.V. StraubP. WangJ. ZhangB. LinkedOmics: analyzing multi-omics data within and across 32 cancer types.Nucleic Acids Res.201846D1D956D96310.1093/nar/gkx109029136207
    [Google Scholar]
  111. KimS. Exploring chemical information in pubchem.Curr. Protoc.202118e21710.1002/cpz1.21734370395
    [Google Scholar]
  112. LiuX. WangS. MengF. WangJ. ZhangY. DaiE. YuX. LiX. JiangW. SM2miR: a database of the experimentally validated small molecules’ effects on microRNA expression.Bioinformatics201329340941110.1093/bioinformatics/bts69823220571
    [Google Scholar]
  113. HamoshA. ScottA.F. AmbergerJ.S. BocchiniC.A. McKusickV.A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.Nucleic Acids Res.200433Database issueD514D51710.1093/nar/gki03315608251
    [Google Scholar]
  114. WangD. GuJ. WangT. DingZ. OncomiRDB: a database for the experimentally verified oncogenic and tumor-suppressive microRNAs.Bioinformatics201430152237223810.1093/bioinformatics/btu15524651967
    [Google Scholar]
  115. RueppA. KowarschA. SchmidlD. BruggenthinF. BraunerB. DungerI. FoboG. FrishmanG. MontroneC. TheisF.J. PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes.Genome Biol.2010111R610.1186/gb‑2010‑11‑1‑r620089154
    [Google Scholar]
  116. PritchardC.C. ChengH.H. TewariM. MicroRNA profiling: approaches and considerations.Nat. Rev. Genet.201213535836910.1038/nrg319822510765
    [Google Scholar]
  117. PanwalkarP. KhireA. ShirsatN. Validation of microRNA target genes using luciferase reporter assay and western blot analysis.Methods Mol. Biol.20222423273810.1007/978‑1‑0716‑1952‑0_334978685
    [Google Scholar]
  118. MarmisolléF.E. GarcíaM.L. ReyesC.A. RNA-binding protein immunoprecipitation as a tool to investigate plant miRNA processing interference by regulatory proteins of diverse origin.Plant Methods2018141910.1186/s13007‑018‑0276‑929422942
    [Google Scholar]
  119. BenesovaS. KubistaM. ValihrachL. Small RNA-Sequencing: Approaches and considerations for miRNA analysis.Diagnostics202111696410.3390/diagnostics1106096434071824
    [Google Scholar]
  120. GaoH. ChakrabortyG. Lee-LimA.P. MavrakisK.J. WendelH.G. GiancottiF.G. Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation.Proc. Natl. Acad. Sci. USA201411146165321653710.1073/pnas.140323411125378704
    [Google Scholar]
  121. CostaM.C. LeitãoA.L. GabrielA.F. EnguitaF.J. Wet-lab methods for miRNA analysis. In: MicroRNA in Human Malignancies.Academic Press20229310710.1016/B978‑0‑12‑822287‑4.00008‑6
    [Google Scholar]
  122. HuY. ZhaoL. LiuZ. JuH. ShiH. XuP. DisSetSim: an online system for calculating similarity between disease sets.2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)15-18 December 2016, Shenzhen, China pp. 1641-1652, 2016.10.1109/BIBM.2016.7822765
    [Google Scholar]
  123. KöhlerS. SchulzM.H. KrawitzP. BauerS. DölkenS. OttC.E. MundlosC. HornD. MundlosS. RobinsonP.N. Clinical diagnostics in human genetics with semantic similarity searches in ontologies.Am. J. Hum. Genet.200985445746410.1016/j.ajhg.2009.09.00319800049
    [Google Scholar]
  124. KöhlerS. VasilevskyN.A. EngelstadM. FosterE. McMurryJ. AyméS. BaynamG. BelloS.M. BoerkoelC.F. BoycottK.M. BrudnoM. BuskeO.J. ChinneryP.F. CiprianiV. ConnellL.E. DawkinsH.J. DeMareL.E. DevereauA.D. de VriesB.B. FirthH.V. FresonK. GreeneD. HamoshA. HelbigI. HumC. JähnJ.A. JamesR. KrauseR. F LaulederkindS.J. LochmüllerH. LyonG.J. OgishimaS. OlryA. OuwehandW.H. PontikosN. RathA. SchaeferF. ScottR.H. SegalM. SergouniotisP.I. SeverR. SmithC.L. StraubV. ThompsonR. TurnerC. TurroE. VeltmanM.W. VulliamyT. YuJ. von ZiegenweidtJ. ZanklA. ZüchnerS. ZemojtelT. JacobsenJ.O. GrozaT. SmedleyD. MungallC.J. HaendelM. RobinsonP.N. The human phenotype ontology in 2017.Nucleic Acids Res.201745D1D865D87610.1093/nar/gkw103927899602
    [Google Scholar]
  125. LiJ. GongB. ChenX. LiuT. WuC. ZhangF. LiC. LiX. RaoS. LiX. DOSim: An R package for similarity between diseases based on Disease Ontology.BMC Bioinformatics201112126610.1186/1471‑2105‑12‑26621714896
    [Google Scholar]
  126. HamanehM.B. YuY.K. DeCoaD: determining correlations among diseases using protein interaction networks.BMC Res. Notes20158122610.1186/s13104‑015‑1211‑z26047952
    [Google Scholar]
  127. DengY. GaoL. WangB. GuoX. HPOSim: an R package for phenotypic similarity measure and enrichment analysis based on the human phenotype ontology.PLoS One2015102e011569210.1371/journal.pone.011569225664462
    [Google Scholar]
  128. YuG. WangL.G. YanG.R. HeQ.Y. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis.Bioinformatics201531460860910.1093/bioinformatics/btu68425677125
    [Google Scholar]
  129. ChengL. JiangY. WangZ. ShiH. SunJ. YangH. ZhangS. HuY. ZhouM. DisSim: an online system for exploring significant similar diseases and exhibiting potential therapeutic drugs.Sci. Rep.2016613002410.1038/srep3002427457921
    [Google Scholar]
  130. ChengL. HuY. SunJ. ZhouM. JiangQ. DincRNA: a comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function.Bioinformatics201834111953195610.1093/bioinformatics/bty00229365045
    [Google Scholar]
  131. ChangL. ZhouG. SoufanO. XiaJ. miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology.Nucleic Acids Res.202048W1W244W25110.1093/nar/gkaa46732484539
    [Google Scholar]
  132. Carmona-SaezP. ChagoyenM. TiradoF. CarazoJ.M. Pascual-MontanoA. GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists.Genome Biol.200781R310.1186/gb‑2007‑8‑1‑r317204154
    [Google Scholar]
  133. KernF. FehlmannT. SolomonJ. SchwedL. GrammesN. BackesC. Van Keuren-JensenK. CraigD.W. MeeseE. KellerA. miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems.Nucleic Acids Res.202048W1W521W52810.1093/nar/gkaa30932374865
    [Google Scholar]
  134. LicursiV. ConteF. FisconG. PaciP. MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis.BMC Bioinformatics201920154510.1186/s12859‑019‑3105‑x31684860
    [Google Scholar]
  135. LuM. ShiB. WangJ. CaoQ. CuiQ. TAM: A method for enrichment and depletion analysis of a microRNA category in a list of microRNAs.BMC Bioinformatics201011141910.1186/1471‑2105‑11‑41920696049
    [Google Scholar]
  136. PreusseM. TheisF.J. MuellerN.S. miTALOS v2: Analyzing tissue specific microRNA function.PLoS One2016113e015177110.1371/journal.pone.015177126998997
    [Google Scholar]
  137. LuT. P. LeeC. Y. TsaiM. H. ChiuY. C. HsiaoC. K. LaiL. C. ChuangE. Y. miRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets.PLoS One201278e4239010.1371/journal.pone.004239022870325
    [Google Scholar]
  138. VlachosI.S. ZagganasK. ParaskevopoulouM.D. GeorgakilasG. KaragkouniD. VergoulisT. DalamagasT. HatzigeorgiouA.G. DIANA-miRPath v3.0: deciphering microRNA function with experimental support.Nucleic Acids Res.201543W1W460W46610.1093/nar/gkv40325977294
    [Google Scholar]
  139. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac19435325185
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936293219240426051148
Loading
/content/journals/cbio/10.2174/0115748936293219240426051148
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test