Skip to content
2000
Volume 15, Issue 2
  • ISSN: 1874-6098
  • E-ISSN: 1874-6128

Abstract

Transport of materials and information across cellular boundaries, such as plasma, mitochondrial and nuclear membranes, happens mainly through varieties of ion channels and pumps. Various biophysical and biochemical processes play vital roles. The underlying mechanisms and associated phenomenological lipid membrane transports are linked directly or indirectly to the cell health condition. Mitochondrial membranes (mitochondrial outer membrane (MOM) and mitochondrial inner membrane (MIM)) host crucial cellular processes. Their malfunction is often found responsible for the rise of cell-originated diseases, including cancer, Alzheimer’s, neurodegenerative disease, etc. A large number of ion channels active across MOM and MIM are known to belong to vital cell-based structures found to be linked directly to cellular signaling. Hence, their malfunctions are often found to contribute to abnormalities in intracellular communication, which may even be associated with the rise of various diseases. This article aims to pinpoint ion channels that are directly or indirectly linked to especially aging and related abnormalities in health conditions. An attempt has been made to address the natural structures of these channels, their mutated conditions, and the ways we may cause interventions in their malfunctioning. The malfunction of ion channel subunits, especially various proteins, involved directly in channel formation and/or indirectly in channel stabilization leads to the rise of various channel-specific diseases, which are known as channelopathies. Channelopathies in aging will be discussed briefly. This mini-review may be found as an important reference for drug discovery scientists dealing with aging-related diseases.

Loading

Article metrics loading...

/content/journals/cas/10.2174/1874609815666220119094324
2022-07-01
2025-06-22
Loading full text...

Full text loading...

/content/journals/cas/10.2174/1874609815666220119094324
Loading

  • Article Type:
    Review Article
Keyword(s): aging; channelopathy; disease; Ion channels; membrane potential; mitochondrial membrane
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test