Skip to content
2000
image of AI-Driven Innovations in Hearing Health: A Review of Artificial Intelligence Applications in Audiology and Hearing Technologies

Abstract

Hearing loss is a prevalent condition affecting over 500 million people globally, with projections estimating more than 700 million cases by 2050. Artificial intelligence (AI) holds transformative potential in audiology, enhancing diagnostic, therapeutic, and rehabilitation outcomes. This review explores the applications of AI in hearing aids, cochlear implants, sign language recognition, and tele-audiology.

A comprehensive literature review was conducted using PubMed, Google Scholar, and other academic databases. Relevant studies on AI-driven advancements in audiology were analyzed, focusing on hearing aid technologies, cochlear implants, diagnostics, and tele-audiology platforms.

AI technologies significantly enhance hearing aids through real-time personalization and adaptive algorithms. Cochlear implants leverage AI for improved speech recognition and listening comfort. AI-powered sign language systems facilitate communication through real-time gesture-to-text conversions, while tele-audiology expands care access using AI-enabled platforms. Diagnostic advancements include AI-enhanced audiometric testing and otoscopy.

AI is revolutionizing hearing healthcare by providing personalized, efficient, and accessible solutions. Its integration into audiology represents a paradigm shift, offering significant improvements in patient outcomes and quality of life.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098352524250123050156
2025-02-11
2025-03-27
Loading full text...

Full text loading...

References

  1. Smith R.J.H. Bale J.F. Jr White K.R. Sensorineural hearing loss in children. Lancet 2005 365 9462 879 890 10.1016/S0140‑6736(05)71047‑3 15752533
    [Google Scholar]
  2. Wilson B.S. Tucci D.L. Merson M.H. O’Donoghue G.M. Global hearing health care: New findings and perspectives. Lancet 2017 390 10111 2503 2515 10.1016/S0140‑6736(17)31073‑5 28705460
    [Google Scholar]
  3. Deafness and hearing loss. Available from: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss 2024
  4. Bhowmik A. Artificial intelligence: From pixels and phonemes to semantic understanding and interactions. Proc. Int. Display Workshops. 2019 26 4 10.36463/idw.2019.0009
    [Google Scholar]
  5. Topol E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019 25 1 44 56 10.1038/s41591‑018‑0300‑7 30617339
    [Google Scholar]
  6. Mitchell M. Krakauer D.C. The debate over understanding in AI’s large language models. Proc. Natl. Acad. Sci. 2023 120 13 e2215907120 10.1073/pnas.2215907120 36943882
    [Google Scholar]
  7. HHTM. Soundsense learn: Machine learning revisited and initial data findings. Available from: https://hearinghealthmatters.org/hearing-technologies/2018/soundsense-learn-machine-learning-widex-evoke-hearing-aid/ 2018
  8. Kim S. Soundsense learn—listening intention and machine learning. Available from: https://hearingreview.com/hearing-products/hearing-aids/real-life-applications-machine-learning-hearing-aids-2 2018
  9. Balling L.W. Mølgaard L.L. Townend O. Nielsen J.B.B. The collaboration between hearing aid users and artificial intelligence to optimize sound. Semin. Hear. 2021 42 3 282 294 10.1055/s‑0041‑1735135 34594090
    [Google Scholar]
  10. Nielsen J Nielsen J Larsen J Perception-based personalization of hearing aids using Gaussian processes and active learning. IEEE/ACM Trans. Audio Speech Lang. Process. 2014 23 162 173 10.1109/TASLP.2014.2377581
    [Google Scholar]
  11. Ni A Akbarzadeh S Lobarinas E Kehtarnavaz N. Personalization of hearing aid fitting based on adaptive dynamic range optimization. Sensors 2022 22 16 6033 10.3390/s22166033
    [Google Scholar]
  12. Hsu J. Starkey’s AI transforms hearing aids into smart wearables. Available from: https://spectrum.ieee.org/the-human-os/biomedical/devices/starkeys-ai-transforms-hearing-aid-into-smart-wearables 2018
  13. Harianawala J. McKinney M. Fabry D. Intelligence at the edge white paper. Available from: https://starkeypro.com/pdfs/technical-papers/Intelligence_at_the_Edge_White_Paper.pdf 2020
  14. Fabry D.A. Bhowmik A.K. Improving speech understanding and monitoring health with hearing aids using artificial intelligence and embedded sensors. Semin. Hear. 2021 42 3 295 308 10.1055/s‑0041‑1735136 34594091
    [Google Scholar]
  15. Zhao Y. Wang D. Merks I. Zhang T. DNN-based enhancement of noisy and reverberant speech. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Shanghai, China, 20-25 March 2016, pp. 6525-6529. 10.1109/ICASSP.2016.7472934
    [Google Scholar]
  16. Zhao Y. Xu B. Giri R. Zhang T. Perceptually guided speech enhancement using deep neural networks. 2018 IEEE International Conference on acoustics, speech and Signal Processing (ICASSP). IEEE 2018 20185074 20185078
    [Google Scholar]
  17. Cook D. AI can now help you hear speech better. Available from: https://www.hearinglossjournal.com/ai-can-now-help-you-hear-speech/ 2020
  18. Walsh K. Zakharenko V. 2.4 GHz table microphone Starkey white paper 2020. Available from: https://home.starkeypro.com/pdfs/WTPR/SG/WTPR2787-00-EE-SG/Table_Microphone_White_Paper.pdf 2020
  19. Oticon moreTM technology. Available from: https://www.oticon.com/professionals/brainhearing-technology/more-technology 2024
  20. Oticon moreTM research. Available from: https://www.oticon.com/professionals/brainhearing-technology/more-research 2024
  21. Waltzman S.B. Kelsall D.C. The use of artificial intelligence to program cochlear implants. Otol. Neurotol. 2020 41 4 452 457 10.1097/MAO.0000000000002566 32176123
    [Google Scholar]
  22. Wathour J. Govaerts P.J. Lacroix E. Naïma D. Effect of a CI programming fitting tool with artificial intelligence in experienced cochlear implant patients. Otol. Neurotol. 2023 44 3 209 215 10.1097/MAO.0000000000003810 36728126
    [Google Scholar]
  23. Paper W. Automatic sound management 3.0 with the SONNET 2 and RONDO 3 audio processor. Available from: https://computationalaudiology.com/wp-content/uploads/2021/06/Automatic-Sound-Management-3.0-white-paper.pdf 2024
  24. Warren C.D. Nel E. Boyd P.J. Controlled comparative clinical trial of hearing benefit outcomes for users of the Cochlear™ Nucleus ® 7 Sound Processor with mobile connectivity. Cochlear Implants Int. 2019 20 3 116 126 10.1080/14670100.2019.1572984 30714500
    [Google Scholar]
  25. Hey M. Hocke T. Böhnke B. Mauger S.J. ForwardFocus with cochlear implant recipients in spatially separated and fluctuating competing signals – introduction of a reference metric. Int. J. Audiol. 2019 58 12 869 878 10.1080/14992027.2019.1638527 31464542
    [Google Scholar]
  26. Musk E. Neuralink. An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 2019 21 10 e16194 10.2196/16194 31642810
    [Google Scholar]
  27. Kulshreshth A. Anand A. Lakanpal A. Neuralink- an Elon musk start-up achieve symbiosis with artificial intelligence. 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) Greater Noida, India, 18-19 October 2019, pp. 105-109. 10.1109/ICCCIS48478.2019.8974470
    [Google Scholar]
  28. Umashankar A. Prabhu P. Can neuralink be effective for bionic hearing? Hear. J. 2020 73 12
    [Google Scholar]
  29. Kendon A. Gesture visible action as utterance. Cambridge University Press 2004 10.1017/CBO9780511807572
    [Google Scholar]
  30. Wen F. Zhang Z. He T. Lee C. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat. Commun. 2021 12 1 5378 10.1038/s41467‑021‑25637‑w 34508076
    [Google Scholar]
  31. He T. Wang H. Wang J. Tian X. Wen F. Shi Q. Ho J.S. Lee C. Self‐sustainable wearable textile nano‐energy nano‐system (NENS) for next‐generation healthcare applications. Adv. Sci. 2019 6 24 1901437 10.1002/advs.201901437 31871857
    [Google Scholar]
  32. Long Y. Wei H. Li J. Yao G. Yu B. Ni D. Gibson A.L.F. Lan X. Jiang Y. Cai W. Wang X. Effective wound healing enabled by discrete alternative electric fields from wearable nanogenerators. ACS Nano 2018 12 12 12533 12540 10.1021/acsnano.8b07038 30488695
    [Google Scholar]
  33. Wang J. Wang H. Thakor N.V. Lee C. Self-powered direct muscle stimulation using a triboelectric nanogenerator (TENG) integrated with a flexible multiple-channel intramuscular electrode. ACS Nano 2019 13 3 3589 3599 10.1021/acsnano.9b00140 30875191
    [Google Scholar]
  34. Guo H. Jia X. Liu L. Cao X. Wang N. Wang Z.L. Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning. ACS Nano 2018 12 4 3461 3467 10.1021/acsnano.8b00140 29537823
    [Google Scholar]
  35. Pu X. An S. Tang Q. Guo H. Hu C. Wearable triboelectric sensors for biomedical monitoring and human-machine interface. iScience 2021 24 1 102027 10.1016/j.isci.2020.102027 33521595
    [Google Scholar]
  36. Ding W. Wang A.C. Wu C. Guo H. Wang Z.L. Human–machine interfacing enabled by triboelectricnanogenerators and tribotronics. Adv. Mater. Technol. 2019 4 1 1800487 10.1002/admt.201800487
    [Google Scholar]
  37. Wang C. Liu Z. Chan S.C. Superpixel-based hand gesture recognition with Kinect depth camera. IEEE Trans. Multimed. 2015 17 1 29 39 10.1109/TMM.2014.2374357
    [Google Scholar]
  38. Wang M. Yan Z. Wang T. Cai P. Gao S. Zeng Y. Wan C. Wang H. Pan L. Yu J. Pan S. He K. Lu J. Chen X. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 2020 3 9 563 570 10.1038/s41928‑020‑0422‑z
    [Google Scholar]
  39. Kim K.K. Ha I. Kim M. Choi J. Won P. Jo S. Ko S.H. A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 2020 11 1 2149 10.1038/s41467‑020‑16040‑y 32358525
    [Google Scholar]
  40. Moin A. Zhou A. Rahimi A. Menon A. Benatti S. Alexandrov G. Tamakloe S. Ting J. Yamamoto N. Khan Y. Burghardt F. Benini L. Arias A.C. Rabaey J.M. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 2020 4 1 54 63 10.1038/s41928‑020‑00510‑8
    [Google Scholar]
  41. LeCun Y. Bengio Y. Hinton G. Deep learning. Nature 2015 521 7553 436 444 10.1038/nature14539 26017442
    [Google Scholar]
  42. Rao G.A. Syamala K. Kishore P.V.V. Sastry A.S.C.S. Deep convolutional neural networks for sign language recognition. 2018 Conference on Signal Processing And Communication Engineering Systems (SPACES) Vijayawada, India, 04-05 January 2018, pp. 194-197. 10.1109/SPACES.2018.8316344
    [Google Scholar]
  43. Kumar S. Kumar P. Mishra P. Tewari P. A robust sign language and hand gesture recognition system using convolutional neural networks. 2023 5th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N) IEEE 2023 10.1109/ICAC3N60023.2023.10541471
    [Google Scholar]
  44. Papastratis I. Chatzikonstantinou C. Konstantinidis D. Dimitropoulos K. Daras P. Artificial intelligence technologies for sign language. Sensors 2021 21 17 5843 10.3390/s21175843 34502733
    [Google Scholar]
  45. Joksimoski B. Zdravevski E. Lameski P. Pires I.M. Melero F.J. Martinez T.P. Garcia N.M. Mihajlov M. Chorbev I. Trajkovik V. Technological solutions for sign language recognition: A scoping review of research trends, challenges, and opportunities. IEEE Access 2022 10 40979 40998 10.1109/ACCESS.2022.3161440
    [Google Scholar]
  46. Kumar L.A. Renuka D.K. Rose S.L. priya S.M.C. Wartana I.M. Deep learning based assistive technology on audio visual speech recognition for hearing impaired. Int. J. Cognit. Comp. Eng. 2022 3 24 30 10.1016/j.ijcce.2022.01.003
    [Google Scholar]
  47. Jacewicz E. Alexander J.M. Fox R.A. Introduction to the special issue on perception and production of sounds in the high-frequency range of human speech. J. Acoust. Soc. Am. 2023 154 5 3168 3172 10.1121/10.0022496 37966331
    [Google Scholar]
  48. Casolani C. Azad B.A. Sørensen R.S. Schlittenlacher J. Epp B. Evaluation of a fast method to measure high-frequency audiometry based on bayesian learning. Trends Hear. 2024 28 23312165231225545 10.1177/23312165231225545 38192152
    [Google Scholar]
  49. Twinomurinzi H. Myburgh H. Barbour D.L. Active transfer learning for audiogram estimation. Front. Digit. Health 2024 6 1267799 10.3389/fdgth.2024.1267799 38532831
    [Google Scholar]
  50. Cox M. Vries D.B. Bayesian pure-tone audiometry through active learning under informed priors. Front. Digit. Health 2021 3 723348 10.3389/fdgth.2021.723348 34713188
    [Google Scholar]
  51. Crowson M.G. Bates D.W. Suresh K. Cohen M.S. Hartnick C.J. “Human vs Machine” validation of a deep learning algorithm for pediatric middle ear infection diagnosis. Otolaryngol. Head Neck Surg. 2023 169 1 41 46 10.1177/01945998221119156 35972815
    [Google Scholar]
  52. Byun H. Park C.J. Oh S.J. Chung M.J. Cho B.H. Cho Y.S. Automatic prediction of conductive hearing loss using video pneumatic otoscopy and deep learning algorithm. Ear Hear. 2022 43 5 1563 1573 10.1097/AUD.0000000000001217 35344974
    [Google Scholar]
  53. Viscaino M. Talamilla M. Maass J.C. Henríquez P. Délano P.H. Cheein A.C. Cheein A.F. Color dependence analysis in a CNN-based computer-aided diagnosis system for middle and external ear diseases. Diagnostics 2022 12 4 917 10.3390/diagnostics12040917 35453965
    [Google Scholar]
  54. Kashani R.G. Młyńczak M.C. Zarabanda D. Pazmino S.P. Huland D.M. Ahmad I.N. Singh S.P. Valdez T.A. Shortwave infrared otoscopy for diagnosis of middle ear effusions: A machine-learning-based approach. Sci. Rep. 2021 11 1 12509 10.1038/s41598‑021‑91736‑9 34131163
    [Google Scholar]
  55. Monroy G.L. Won J. Dsouza R. Pande P. Hill M.C. Porter R.G. Novak M.A. Spillman D.R. Boppart S.A. Automated classification platform for the identification of otitis media using optical coherence tomography. NPJ Digit. Med. 2019 2 1 22 10.1038/s41746‑019‑0094‑0 31304369
    [Google Scholar]
  56. Monroy G.L. Won J. Shi J. Hill M.C. Porter R.G. Novak M.A. Hong W. Khampang P. Kerschner J.E. Spillman D.R. Jr Boppart S.A. Automated classification of otitis media with OCT: Augmenting pediatric image datasets with gold-standard animal model data. Biomed. Opt. Express 2022 13 6 3601 3614 10.1364/BOE.453536 35781950
    [Google Scholar]
  57. Wang Y.M. Li Y. Cheng Y.S. He Z.Y. Yang J.M. Xu J.H. Chi Z.C. Chi F.L. Ren D.D. Deep learning in automated region proposal and diagnosis of chronic otitis media based on computed tomography. Ear Hear. 2020 41 3 669 677 10.1097/AUD.0000000000000794 31567561
    [Google Scholar]
  58. Wang Z. Song J. Su R. Hou M. Qi M. Zhang J. Wu X. Structure-aware deep learning for chronic middle ear disease. Expert Syst. Appl. 2022 194 116519 116519 10.1016/j.eswa.2022.116519
    [Google Scholar]
  59. Duan B. Guo Z. Pan L. Xu Z. Chen W. Temporal bone CT-based deep learning models for differential diagnosis of primary ciliary dyskinesia related otitis media and simple otitis media with effusion. Am. J. Transl. Res. 2022 14 7 4728 4735 35958478
    [Google Scholar]
  60. Lee K.J. Ryoo I. Choi D. Sunwoo L. You S.H. Jung H.N. Performance of deep learning to detect mastoiditis using multiple conventional radiographs of mastoid. PLoS One 2020 15 11 e0241796 10.1371/journal.pone.0241796 33176335
    [Google Scholar]
  61. Sundgaard J.V. Bray P. Laugesen S. Harte J. Kamide Y. Tanaka C. Christensen A.N. Paulsen R.R. A deep learning approach for detecting otitis media from wideband tympanometry measurements. IEEE J. Biomed. Health Inform. 2022 26 7 2974 2982 10.1109/JBHI.2022.3159263 35290196
    [Google Scholar]
  62. Binol H. Niazi M.K.K. Elmaraghy C. Moberly A.C. Gurcan M.N. Automated video summarization and label assignment for otoscopy videos using deep learning and natural language processing. Med. Imag. Inform. Health. Res. Appl. 2021 11601 SPIE 10.1117/12.2582009
    [Google Scholar]
  63. Herigon J.C. Kimia A. Harper M. 1358. Using natural language processing to optimize case ascertainment of acute otitis media in a large, state-wide pediatric practice network. Open Forum Infect. Dis. 2020 7 S690 S691 10.1093/ofid/ofaa439.1540
    [Google Scholar]
  64. Mothershaw A. Smith A.C. Perry C.F. Brown C. Caffery L.J. Does artificial intelligence have a role in telehealth screening of ear disease in Indigenous children in Australia? Aust. J. Otolaryngol. 2021 4 4451 10.21037/ajo‑21‑14
    [Google Scholar]
  65. Fang T.Y. Lin T.Y. Shen C.M. Hsu S.Y. Lin S.H. Kuo Y.J. Chen M.H. Yin T.K. Liu C.H. Lo M.T. Wang P.C. Algorithm‐driven tele‐otoscope for remote care for patients with otitis media. Otolaryngol. Head Neck Surg. 2024 170 6 1590 1597 10.1002/ohn.738 38545686
    [Google Scholar]
  66. Chan J. Raju S. Nandakumar R. Bly R. Gollakota S. Detecting middle ear fluid using smartphones. Sci. Transl. Med. 2019 11 492 eaav1102 10.1126/scitranslmed.aav1102 31092691
    [Google Scholar]
  67. Cha D. Pae C. Seong S.B. Choi J.Y. Park H.J. Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database. EBioMedicine 2019 45 606 614 10.1016/j.ebiom.2019.06.050 31272902
    [Google Scholar]
  68. Sooful P. Simpson A. Thornton M. Šarkic´ B. The AI revolution: Rethinking assessment in audiology training programs. Hear. J. 2023 76 11 000 10.1097/01.HJ.0000995264.80206.87
    [Google Scholar]
  69. Ayers J.W. Poliak A. Dredze M. Leas E.C. Zhu Z. Kelley J.B. Faix D.J. Goodman A.M. Longhurst C.A. Hogarth M. Smith D.M. Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern. Med. 2023 183 6 589 596 10.1001/jamainternmed.2023.1838 37115527
    [Google Scholar]
  70. Tal A. Elyoseph Z. Haber Y. Angert T. Gur T. Simon T. Asman O. The artificial third: Utilizing chatgpt in mental health. Am. J. Bioeth. 2023 23 10 74 77 10.1080/15265161.2023.2250297 37812102
    [Google Scholar]
  71. Crowson M.G. Lin V. Chen J.M. Chan T.C.Y. Machine learning and cochlear implantation—A structured review of opportunities and challenges. Otol. Neurotol. 2020 41 1 e36 e45 10.1097/MAO.0000000000002440 31644477
    [Google Scholar]
  72. Mondal H. Dash I. Mondal S. Behera J.K. Chatgpt in answering queries related to lifestyle-related diseases and disorders. Cureus 2023 15 11 e48296 10.7759/cureus.48296 38058315
    [Google Scholar]
  73. Langlie J. Kamrava B. Pasick L.J. Mei C. Hoffer M.E. Artificial intelligence and ChatGPT: An otolaryngology patient’s ally or foe? Am. J. Otolaryngol. 2024 45 3 104220 10.1016/j.amjoto.2024.104220 38219629
    [Google Scholar]
  74. ElahiShirvan H. Ravandi G.M.R. Zare S. Ahsaee G.M. Using audiometric data to weigh and prioritize factors that affect workers’ hearing loss through support vector machine (SVM) algorithm. Sound Vibrat. 2020 54 2 99 112 10.32604/sv.2020.08839
    [Google Scholar]
  75. Zare S. Ravandi G.M.R. ElahiShirvan H. Ahsaee M.G. Rostami M. Predicting and weighting the factors affecting workers’ hearing loss based on audiometric data using C5 algorithm. Ann. Glob. Health 2019 85 1 88 10.5334/aogh.2522 31225964
    [Google Scholar]
  76. Zare S. Ghotbiravandi M.R. Elahishirvan H. Ahsaeed M.G. Rostami M. Esmaeili R. Modeling and predicting the changes in hearing loss of workers with the use of a neural network data mining algorithm: A field study. Arch. Acoust. 2023 45 2 303 311 10.24425/aoa.2020.133150
    [Google Scholar]
  77. Nawi M. Noise-induced hearing loss prediction in malaysian industrial workers using gradient descent with adaptive momentum algorithm. Int. Rev. Comp. Soft. 2011 6 5 740 749
    [Google Scholar]
  78. Kim Y.S. Cho Y.H. Kwon O.J. Choi S.W. Rhee K.Y. The risk rating system for noise-induced hearing loss in korean manufacturing sites based on the 2009 survey on work environments. Saf. Health Work 2011 2 4 336 347 10.5491/SHAW.2011.2.4.336 22953218
    [Google Scholar]
  79. Bing D. Ying J. Miao J. Lan L. Wang D. Zhao L. Yin Z. Yu L. Guan J. Wang Q. Predicting the hearing outcome in sudden sensorineural hearing loss via machine learning models. Clin. Otolaryngol. 2018 43 3 868 874 10.1111/coa.13068 29356346
    [Google Scholar]
  80. Park K.V. Oh K.H. Jeong Y.J. Rhee J. Han M.S. Han S.W. Choi J. Machine learning models for predicting hearing prognosis in unilateral idiopathic sudden sensorineural hearing loss. Clin. Exp. Otorhinolaryngol. 2020 13 2 148 156 10.21053/ceo.2019.01858 32156103
    [Google Scholar]
  81. Tomiazzi J.S. Pereira D.R. Judai M.A. Antunes P.A. Favareto A.P.A. Performance of machine-learning algorithms to pattern recognition and classification of hearing impairment in Brazilian farmers exposed to pesticide and/or cigarette smoke. Environ. Sci. Pollut. Res. Int. 2019 26 7 6481 6491 10.1007/s11356‑018‑04106‑w 30623325
    [Google Scholar]
  82. Chang Y.S. Park H. Hong S.H. Chung W.H. Cho Y.S. Moon I.J. Predicting cochlear dead regions in patients with hearing loss through a machine learning-based approach: A preliminary study. PLoS One 2019 14 6 e0217790 10.1371/journal.pone.0217790 31158267
    [Google Scholar]
  83. Waal D.R. Hugo R. Soer M. Krüger J.J. Predicting hearing loss from otoacoustic emissions using an artificial neural network. S. Afr. J. Commun. Disord. 2002 49 1 28 39 10.4102/sajcd.v49i1.215 14968700
    [Google Scholar]
  84. Liu Y.W. Kao S.L. Wu H.T. Liu T.C. Fang T.Y. Wang P.C. Transient-evoked otoacoustic emission signals predicting outcomes of acute sensorineural hearing loss in patients with Ménière’s disease. Acta Otolaryngol. 2020 140 3 230 235 10.1080/00016489.2019.1704865 32003266
    [Google Scholar]
  85. Ziavra N. Kastanioudakis I. Trikalinos T.A. Skevas A. Ioannidis J.P.A. Diagnosis of sensorineural hearing loss with neural networks versus logistic regression modeling of distortion product otoacoustic emissions. Audiol. Neurotol. 2004 9 2 81 87 10.1159/000075999 14981356
    [Google Scholar]
  86. Acır N. Özdamar Ö. Güzeliş C. Automatic classification of auditory brainstem responses using SVM-based feature selection algorithm for threshold detection. Eng. Appl. Artif. Intell. 2006 19 2 209 218 10.1016/j.engappai.2005.08.004
    [Google Scholar]
  87. Molina M.E. Perez A. Valente J.P. Classification of auditory brainstem responses through symbolic pattern discovery. Artif. Intell. Med. 2016 70 12 30 10.1016/j.artmed.2016.05.001 27431034
    [Google Scholar]
  88. Chen F. Cao Z. Grais E.M. Zhao F. Contributions and limitations of using machine learning to predict noise-induced hearing loss. Int. Arch. Occup. Environ. Health 2021 94 5 1097 1111 10.1007/s00420‑020‑01648‑w 33491101
    [Google Scholar]
  89. Macesic N. Walk B.D.O.J. IV Pe’er I. Tatonetti N.P. Peleg A.Y. Uhlemann A.C. Predicting phenotypic polymyxin resistance in klebsiella pneumoniae through machine learning analysis of genomic data. mSystems 2020 5 3 10.1128/msystems.00656-19 10.1128/msystems.00656‑19 32457240
    [Google Scholar]
  90. Mansbach R.A. Leus I.V. Mehla J. Lopez C.A. Walker J.K. Rybenkov V.V. Hengartner N.W. Zgurskaya H.I. Gnanakaran S. Machine learning algorithm identifies an antibiotic vocabulary for permeating gram-negative bacteria. J. Chem. Inf. Model. 2020 60 6 2838 2847 10.1021/acs.jcim.0c00352 32453589
    [Google Scholar]
  91. Qureshi S.A. Hsiao W.W.W. Hussain L. Aman H. Le T.N. Rafique M. Recent development of fluorescent nanodiamonds for optical biosensing and disease diagnosis. Biosensors 2022 12 12 1181 10.3390/bios12121181 36551148
    [Google Scholar]
  92. Miwa T. Minoda R. Yamaguchi T. Kita S. Osaka K. Takeda H. Kanemaru S. Omori K. Application of artificial intelligence using a convolutional neural network for detecting cholesteatoma in endoscopic enhanced images. Auris Nasus Larynx 2022 49 1 11 17 10.1016/j.anl.2021.03.018 33824034
    [Google Scholar]
  93. Ding A.S. Lu A. Li Z. Galaiya D. Siewerdsen J.H. Taylor R.H. Creighton F.X. Automated registration‐based temporal bone computed tomography segmentation for applications in neurotologic surgery. Otolaryngol. Head Neck Surg. 2022 167 1 133 140 10.1177/01945998211044982 34491849
    [Google Scholar]
  94. Rubenstein L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006 35 2 ii37 ii41 10.1093/ageing/afl084 16926202
    [Google Scholar]
  95. Lin F.R. Ferrucci L. Hearing loss and falls among older adults in the United States. Arch. Intern. Med. 2012 172 4 369 371 10.1001/archinternmed.2011.728 22371929
    [Google Scholar]
  96. Crenshaw J.R. Bernhardt K.A. Achenbach S.J. Atkinson E.J. Khosla S. Kaufman K.R. Amin S. The circumstances, orientations, and impact locations of falls in community-dwelling older women. Arch. Gerontol. Geriatr. 2017 73 240 247 10.1016/j.archger.2017.07.011 28863352
    [Google Scholar]
  97. Burwinkel J.R. Xu B. Crukley J. Preliminary examination of the accuracy of a fall detection device embedded into hearing instruments. J. Am. Acad. Audiol. 2020 31 6 393 403 10.3766/jaaa.19056 31914373
    [Google Scholar]
/content/journals/cas/10.2174/0118746098352524250123050156
Loading
/content/journals/cas/10.2174/0118746098352524250123050156
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test