Skip to content
2000
image of New Insights into Colorectal Cancer through the Lens of Precision Oncology and Personalized Medicine: Multi-Omics Helps Aging of Predisposed People

Abstract

Background

Recently, there has been a significant evolution in our understanding of the molecular pathways causing the genesis and progression of cancer the inter-individual variations. Thus, one-size-fits-all methods for cancer treatment have been replaced by precision oncology (PO) targeting individual cancer symptoms, offering increased effectiveness, and decreased safety concerns and cost load.

Objective

The identification of novel actionable indications, rapid, precise, and comprehensive detection of complex phenotypes in every individual, pioneering clinical trial projects with enhanced response feedback, and widespread availability of innovative targeted anticancer management for every patient are vital for the effective implementation of next-generation precision oncology. Additionally, the emergence of precision medicine has altered the perspective of oncologic biomarkers, drug discovery, drug development, and, improvements for cancer patients.

Method

This paper narratively reviewed to identify actionable abnormalities, Genomic profiling of tumors employing clinical next-generation sequencing (NGS) from both tumor tissues and liquid biopsies along with the multi-omics strategies as the key component of PO.

Results

Our increasing information on tumor biology, specifically microenvironment and heterogeneity-associated data, would improve our understanding of the resistance of targeted drugs and specific mechanisms of action, as well as help enhance existing metastatic colorectal cancer (mCRC) treatment strategies.

Conclusion

Collectively, this paper indicated the current and innovative strategies for prognosis, diagnosis, and treatment of various cancer types based on PO overview with a groundbreaking emphasis on CRC suggesting the integrations of multi-omics, highlighting Genomics, and utilizing AL and ML algorithms with targeted therapies. Notably, these findings can help improve the life-span and ageing of the predisposed people.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098348122241024061610
2024-11-05
2025-01-17
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Smittenaar C.R. Petersen K.A. Stewart K. Moitt N. Cancer incidence and mortality projections in the UK until 2035. Br. J. Cancer 2016 115 9 1147 1155 10.1038/bjc.2016.304 27727232
    [Google Scholar]
  3. Moa H. Dennya K.D. US national library of medicine. what is precision medicine. genetics home reference: your guide to understanding genetic conditions. Inf. Serv. Use 2020 42 1 71 80 10.3233/ISU‑210144 35600119
    [Google Scholar]
  4. Tran A. Klossner Q. Crain T. Prasad V. Shifting, overlapping and expanding use of “precision oncology” terminology: a retrospective literature analysis. BMJ Open 2020 10 6 e036357 10.1136/bmjopen‑2019‑036357 32513891
    [Google Scholar]
  5. Schwartzberg L. Kim E.S. Liu D. Schrag D. Precision oncology: who, how, what, when, and when not? Am. Soc. Clin. Oncol. Educ. Book 2017 37 37 160 169 10.1200/EDBK_174176 28561651
    [Google Scholar]
  6. Hahn W.C. Weinberg R.A. A subway map of cancer pathways. 2002 Available from: https://www.nature.com/documents/nrc_posters_subpathways.pdf
  7. Gerlinger M. Horswell S. Larkin J. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 2014 46 3 225 233 10.1038/ng.2891 24487277
    [Google Scholar]
  8. Brock A. Huang S. Precision oncology: between vaguely right and precisely wrong. Cancer Res. 2017 77 23 6473 6479 10.1158/0008‑5472.CAN‑17‑0448 29162615
    [Google Scholar]
  9. Stratton M.R. Campbell P.J. Futreal P.A. The cancer genome. Nature 2009 458 7239 719 724 10.1038/nature07943 19360079
    [Google Scholar]
  10. Goode D.K. Obier N. Vijayabaskar M.S. Dynamic gene regulatory networks drive hematopoietic specification and differentiation. Dev. Cell 2016 36 5 572 587 10.1016/j.devcel.2016.01.024 26923725
    [Google Scholar]
  11. Ginsburg G.S. Phillips K.A. Precision medicine: from science to value. Health Aff. 2018 37 5 694 701 10.1377/hlthaff.2017.1624 29733705
    [Google Scholar]
  12. Horgan D. Ciliberto G. Conte P. Bringing onco-innovation to Europe’s healthcare systems: The potential of biomarker testing, real world evidence, tumour agnostic therapies to empower personalised medicine. Cancers 2021 13 3 583 10.3390/cancers13030583 33540773
    [Google Scholar]
  13. Arnold M. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2016 66 4 683 691 10.1136/gutjnl‑2015‑310912 26818619
    [Google Scholar]
  14. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  15. Schottenfeld D. Fraumeni J.F. Jr Cancer epidemiology and prevention. 4th ed New York Oxford University Press 2006 1 6 10.1093/acprof:oso/9780195149616.001.0001
    [Google Scholar]
  16. Magalhães B. Peleteiro B. Lunet N. Dietary patterns and colorectal cancer. Eur. J. Cancer Prev. 2012 21 1 15 23 10.1097/CEJ.0b013e3283472241 21946864
    [Google Scholar]
  17. Cronin K.A. Lake A.J. Scott S. Annual Report to the Nation on the Status of Cancer, part I: National cancer statistics. Cancer 2018 124 13 2785 2800 10.1002/cncr.31551 29786848
    [Google Scholar]
  18. Souza e Silva V. Chinen L. Abdallah E. Early detection of poor outcome in patients with metastatic colorectal cancer: tumor kinetics evaluated by circulating tumor cells. OncoTargets Ther. 2016 9 7503 7513 10.2147/OTT.S115268 28008271
    [Google Scholar]
  19. Muratore A. Zorzi D. Bouzari H. Asymptomatic colorectal cancer with un-resectable liver metastases: immediate colorectal resection or up-front systemic chemotherapy? Ann. Surg. Oncol. 2007 14 2 766 770 10.1245/s10434‑006‑9146‑1 17103261
    [Google Scholar]
  20. Kristina Gregory N. Lisa Gurski O. Benson A. NCCN guidelines version 1.2019 colon cancer continue NCCN guidelines panel disclosures. 2019 Available from: https://www.aecp-es.org/images/site/recursos/documentos/NCCN_Clinical_Practice_Guidelines_in_Oncology._Colon_Cancer_2019.pdf
  21. Van Cutsem E. Cervantes A. Adam R. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016 27 8 1386 1422 10.1093/annonc/mdw235 27380959
    [Google Scholar]
  22. Henry J.T. Johnson B. Current and evolving biomarkers for precision oncology in the management of metastatic colorectal cancer. Chin Clin Oncol 2019 8 5 49 10.21037/cco.2019.08.08 31500426
    [Google Scholar]
  23. Tarawneh T.S. Rodepeter F.R. Teply-Szymanski J. Combined Focused Next-Generation Sequencing Assays to Guide Precision Oncology in Solid Tumors: A Retrospective Analysis from an Institutional Molecular Tumor Board. Cancers 2022 14 18 4430 10.3390/cancers14184430 36139590
    [Google Scholar]
  24. Walter W. Next-generation diagnostics for precision oncology: Preanalytical considerations, technical challenges, and available technologies. Semin. Cancer Biol. 2022 84 3 15 10.1016/j.semcancer.2020.10.015 33171257
    [Google Scholar]
  25. Yang H.T. Shah R.H. Tegay D. Onel K. Precision oncology: lessons learned and challenges for the future. Cancer Manag. Res. 2019 11 7525 7536 10.2147/CMAR.S201326 31616176
    [Google Scholar]
  26. Jobanputra V. Clinical interpretation of whole-genome and whole-transcriptome sequencing for precision oncology. Semin. Cancer Biol. 2022 84 23 31 10.1016/j.semcancer.2021.07.003 34256129
    [Google Scholar]
  27. Maurer K. Schandl C.A. Liquid biopsy for advanced cancer: An amplicon-based massively parallel sequencing panel approach to precision oncology. Methods Mol. Biol. 2023 2621 111 126 10.1007/978‑1‑0716‑2950‑5_8 37041443
    [Google Scholar]
  28. Seow J.J.W. Wong R.M.M. Pai R. Sharma A. Single‐Cell RNA Sequencing for Precision Oncology: Current State-of-Art. J. Indian Inst. Sci. 2020 100 3 579 588 10.1007/s41745‑020‑00178‑1 32837038
    [Google Scholar]
  29. Melnekoff D.T. Laganà A. Single-cell sequencing technologies in precision oncology. Adv. Exp. Med. Biol. 2022 1361 269 282 10.1007/978‑3‑030‑91836‑1_15 35230694
    [Google Scholar]
  30. Laganà A. Computational approaches for the investigation of intra-tumor heterogeneity and clonal evolution from bulk sequencing data in precision oncology applications. Adv. Exp. Med. Biol. 2022 1361 101 118 10.1007/978‑3‑030‑91836‑1_6
    [Google Scholar]
  31. Kelley M.J. VA National precision oncology program. Fed. Pract. 2020 37 Suppl. 4 S22 S27 32908351
    [Google Scholar]
  32. Schmidt K.T. Chau C.H. Price D.K. Figg W.D. Precision oncology medicine: the clinical relevance of patient‐specific biomarkers used to optimize cancer treatment. J. Clin. Pharmacol. 2016 56 12 1484 1499 10.1002/jcph.765 27197880
    [Google Scholar]
  33. Srivastava R. Applications of artificial intelligence multiomics in precision oncology. J. Cancer Res. Clin. Oncol. 2023 149 1 503 510 10.1007/s00432‑022‑04161‑4 35796775
    [Google Scholar]
  34. Botsis T. Murray J.C. Ghanem P. Precision Oncology Core Data Model to Support Clinical Genomics Decision Making. JCO Clin. Cancer Inform. 2023 7 7 e2200108 10.1200/CCI.22.00108 37040583
    [Google Scholar]
  35. Parums D.V. Editorial: Twenty Years On from Sequencing the Human Genome, Personalized/Precision Oncology Prepares to Meet the Challenges of Checkpoint Inhibitor Therapy. Med. Sci. Monit. 2023 29 e940911 e1 10.12659/MSM.940911 37122279
    [Google Scholar]
  36. Srivastava R. Chemical Reactivity and Optical and Pharmacokinetics Studies of 14 Multikinase Inhibitors and Their Docking Interactions Toward ACK1 for Precision Oncology. Front Chem. 2022 10 843642 10.3389/fchem.2022.843642 35494626
    [Google Scholar]
  37. Audisio A. Fazio R. Hendlisz A. Sclafani F. Neoadjuvant chemotherapy for resectable colon cancer in the era of precision oncology: a step forward or a step back? Curr. Opin. Oncol. 2023 35 4 315 317 10.1097/CCO.0000000000000945 37285030
    [Google Scholar]
  38. Mock A. Murphy S. Morris J. Marass F. Rosenfeld N. Massie C. CVE: an R package for interactive variant prioritisation in precision oncology. BMC Med. Genomics 2017 10 1 37 10.1186/s12920‑017‑0261‑6 28545463
    [Google Scholar]
  39. Shen J.P. Artificial intelligence, molecular subtyping, biomarkers, and precision oncology. Emerg. Top. Life Sci. 2021 5 6 747 756 10.1042/ETLS20210212 34881776
    [Google Scholar]
  40. Solomon I.B. McGraw S. Shen J. Engaging patients in precision oncology: development and usability of a web-based patient-facing genomic sequencing report. JCO Precis. Oncol. 2020 4 4 307 318 10.1200/PO.19.00195 32923887
    [Google Scholar]
  41. Groisberg R. Subbiah V. Combination therapies for precision oncology: the ultimate whack-a-mole game. Clin. Cancer Res. 2021 27 10 2672 2674 10.1158/1078‑0432.CCR‑21‑0254 33707180
    [Google Scholar]
  42. Plana D. Palmer A.C. Sorger P.K. Independent drug action in combination therapy: implications for precision oncology. Cancer Discov. 2022 12 3 606 624 10.1158/2159‑8290.CD‑21‑0212 34983746
    [Google Scholar]
  43. Gyawali B. Parsad S. Feinberg B.A. Nabhan C. Real-world evidence and randomized studies in the precision oncology era: the right balance. JCO Precis. Oncol. 2017 1 1 1 5 10.1200/PO.17.00132 35172519
    [Google Scholar]
  44. LoRusso P.M. Freidlin B. Improving precision oncology through better designs and reporting of biomarker-driven randomized clinical trials. J. Natl. Cancer Inst. 2023 115 2 122 124 10.1093/jnci/djac212 36448688
    [Google Scholar]
  45. Siu D.H.W. Lin F.P.Y. Cho D. Framework for the Use of External Controls to Evaluate Treatment Outcomes in Precision Oncology Trials. JCO Precis. Oncol. 2024 8 8 e2300317 10.1200/PO.23.00317 38190581
    [Google Scholar]
  46. Renfro L.A. An M.W. Mandrekar S.J. Precision oncology: A new era of cancer clinical trials. Cancer Lett. 2017 387 121 126 10.1016/j.canlet.2016.03.015 26987624
    [Google Scholar]
  47. Mock A. Teleanu M.V. Kreutzfeldt S. NCT/DKFZ MASTER handbook of interpreting whole-genome, transcriptome, and methylome data for precision oncology. NPJ Precis. Oncol. 2023 7 1 109 10.1038/s41698‑023‑00458‑w 37884744
    [Google Scholar]
  48. Langenberg K.P.S. Meister M.T. Bakhuizen J.J. Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’. Eur. J. Cancer 2022 175 311 325 10.1016/j.ejca.2022.09.001 36182817
    [Google Scholar]
  49. Satpathy S. Jaehnig E.J. Krug K. Microscaled proteogenomic methods for precision oncology. Nat. Commun. 2020 11 1 532 10.1038/s41467‑020‑14381‑2 31988290
    [Google Scholar]
  50. Lim Kam Sian T.C.C. Chüeh A.C. Daly R.J. Proteomics‐based interrogation of the kinome and its implications for precision oncology. Proteomics 2021 21 17-18 2000161 10.1002/pmic.202000161 33547865
    [Google Scholar]
  51. Arga K.Y. Attia H. Aziz R.K. Pharmacomicrobiomics-Guided Precision Oncology: A New Frontier of P4 (Predictive, Personalized, Preventive, and Participatory) Medicine and Microbiome-Based Therapeutics. OMICS 2024 28 1 5 7 10.1089/omi.2023.0254 38190279
    [Google Scholar]
  52. Schipper L.J. Zeverijn L.J. Garnett M.J. Voest E.E. Can drug repurposing accelerate precision oncology? Cancer Discov. 2022 12 7 1634 1641 10.1158/2159‑8290.CD‑21‑0612 35642948
    [Google Scholar]
  53. Granat L.M. Kambhampati O. Klosek S. Niedzwecki B. Parsa K. Zhang D. The promises and challenges of patient‐derived tumor organoids in drug development and precision oncology. Animal Model. Exp. Med. 2019 2 3 150 161 10.1002/ame2.12077 31773090
    [Google Scholar]
  54. Ding S. Patient-derived micro-organospheres enable clinical precision oncology. Cell Stem Cell 2022 29 6 905 917 10.1016/j.stem.2022.04.006
    [Google Scholar]
  55. Bose S. Barroso M. Chheda M.G. A path to translation: How 3D patient tumor avatars enable next generation precision oncology. Cancer Cell 2022 40 12 1448 1453 10.1016/j.ccell.2022.09.017 36270276
    [Google Scholar]
  56. Xu Q. Yan M. Tang Y. 3D-autologous culture method for precision oncology. Methods Mol. Biol. 2023 2660 61 68 10.1007/978‑1‑0716‑3163‑8_5 37191790
    [Google Scholar]
  57. Cho S.Y. Patient-derived xenografts as compatible models for precision oncology. Lab. Anim. Res. 2020 36 1 14 10.1186/s42826‑020‑00045‑1 32461927
    [Google Scholar]
  58. D’Adamo G.L. Widdop J.T. Giles E.M. The future is now? Clinical and translational aspects of “Omics” technologies. Immunol. Cell Biol. 2021 99 2 168 176 10.1111/imcb.12404 32924178
    [Google Scholar]
  59. Huang G. Applications of metagenomics in studying human cancer. Front. Genet. 2021 12 760141 10.3389/fgene.2021.760141 34603403
    [Google Scholar]
  60. Chang Y.S. Hsu M.H. Tu S.J. Metatranscriptomic analysis of human lung metagenomes from patients with lung cancer. Genes 2021 12 9 1458 10.3390/genes12091458 34573440
    [Google Scholar]
  61. Villanueva L. Álvarez-Errico D. Esteller M. The contribution of epigenetics to cancer immunotherapy. Trends Immunol. 2020 41 8 676 691 10.1016/j.it.2020.06.002 32622854
    [Google Scholar]
  62. Bulaklak K. Gersbach C.A. The once and future gene therapy. Nat. Commun. 2020 11 1 5820 10.1038/s41467‑020‑19505‑2 33199717
    [Google Scholar]
  63. Liu L. Chen X. Hu C. Synthetic lethality-based identification of targets for anticancer drugs in the human signaling network. Sci. Rep. 2018 8 1 8440 10.1038/s41598‑018‑26783‑w 29855504
    [Google Scholar]
  64. Smetana J. Brož P. National genome initiatives in Europe and the United Kingdom in the era of whole-genome sequencing: a comprehensive review. Genes 2022 13 3 556 10.3390/genes13030556 35328109
    [Google Scholar]
  65. Berlanga P. Pierron G. Lacroix L. The European MAPPYACTS trial: precision medicine program in pediatric and adolescent patients with recurrent malignancies. Cancer Discov. 2022 12 5 1266 1281 10.1158/2159‑8290.CD‑21‑1136 35292802
    [Google Scholar]
  66. Bailey M.H. Comprehensive characterization of cancer driver genes and mutations. Cell 2018 173 2 371 385 10.1016/j.cell.2018.02.060
    [Google Scholar]
  67. Senga S.S. Grose R.P. Hallmarks of cancer-the new testament. Open Biol. 2021 11 1 200358 10.1098/rsob.200358 33465324
    [Google Scholar]
  68. Fritsche L.G. Gruber S.B. Wu Z. Association of polygenic risk scores for multiple cancers in a phenome-wide study: results from the Michigan Genomics Initiative. Am. J. Hum. Genet. 2018 102 6 1048 1061 10.1016/j.ajhg.2018.04.001 29779563
    [Google Scholar]
  69. Grant R.C. Exome-wide association study of pancreatic cancer risk. Gastroenterology 2018 154 3 719 722 10.1053/j.gastro.2017.10.015
    [Google Scholar]
  70. Smedley D. Smith K.R. Martin A. 100, G.P.P.I., 100,000 genomes pilot on rare-disease diagnosis in health care-preliminary report. N. Engl. J. Med. 2021 385 20 1868 1880 10.1056/NEJMoa2035790 34758253
    [Google Scholar]
  71. Lee J.S. Exploring cancer genomic data from the cancer genome atlas project. BMB Rep. 2016 49 11 607 611 10.5483/BMBRep.2016.49.11.145 27530686
    [Google Scholar]
  72. Rulten S.L. Grose R.P. Gatz S.A. Jones J.L. Cameron A.J.M. The Future of Precision Oncology. Int. J. Mol. Sci. 2023 24 16 12613 10.3390/ijms241612613 37628794
    [Google Scholar]
  73. Wang T. Zhang H. Zhou Y. Shi J. Extrachromosomal circular DNA: a new potential role in cancer progression. J. Transl. Med. 2021 19 1 257 10.1186/s12967‑021‑02927‑x 34112178
    [Google Scholar]
  74. Dai J. Su Y. Zhong S. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther. 2020 5 1 145 10.1038/s41392‑020‑00261‑0 32759948
    [Google Scholar]
  75. Russo A. Incorvaia L. Del Re M. The molecular profiling of solid tumors by liquid biopsy: a position paper of the AIOM–SIAPEC-IAP–SIBioC–SIC–SIF Italian Scientific Societies. ESMO Open 2021 6 3 100164 10.1016/j.esmoop.2021.100164 34091263
    [Google Scholar]
  76. Openshaw M.R. Suwaidan A.A. Ottolini B. Longitudinal monitoring of circulating tumour DNA improves prognostication and relapse detection in gastroesophageal adenocarcinoma. Br. J. Cancer 2020 123 8 1271 1279 10.1038/s41416‑020‑1002‑8 32719550
    [Google Scholar]
  77. Jamal-Hanjani M. Hackshaw A. Ngai Y. Tracking genomic cancer evolution for precision medicine: the lung TRACERx study. PLoS Biol. 2014 12 7 e1001906 10.1371/journal.pbio.1001906 25003521
    [Google Scholar]
  78. Büttner R. Longshore J.W. López-Ríos F. Implementing TMB measurement in clinical practice: considerations on assay requirements. ESMO Open 2019 4 1 e000442 10.1136/esmoopen‑2018‑000442 30792906
    [Google Scholar]
  79. Valla V. Alzabin S. Koukoura A. Lewis A. Nielsen A.A. Vassiliadis E. Companion diagnostics: state of the art and new regulations. Biomark. Insights 2021 16 10.1177/11772719211047763 34658618
    [Google Scholar]
  80. Phillips K.A. Douglas M.P. Wordsworth S. Buchanan J. Marshall D.A. Availability and funding of clinical genomic sequencing globally. BMJ Glob. Health 2021 6 2 e004415 10.1136/bmjgh‑2020‑004415 33574068
    [Google Scholar]
  81. Marabelle A. Fakih M. Lopez J. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020 21 10 1353 1365 10.1016/S1470‑2045(20)30445‑9 32919526
    [Google Scholar]
  82. Le D.T. Uram J.N. Wang H. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 2015 372 26 2509 2520 10.1056/NEJMoa1500596 26028255
    [Google Scholar]
  83. Oberg J.A. Glade Bender J.L. Sulis M.L. Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med. 2016 8 1 133 10.1186/s13073‑016‑0389‑6 28007021
    [Google Scholar]
  84. Harris M.H. DuBois S.G. Glade Bender J.L. Multicenter feasibility study of tumor molecular profiling to inform therapeutic decisions in advanced pediatric solid tumors: the individualized cancer therapy (iCat) study. JAMA Oncol. 2016 2 5 608 615 10.1001/jamaoncol.2015.5689 26822149
    [Google Scholar]
  85. Chang W. Brohl A.S. Patidar R. MultiDimensional ClinOmics for precision therapy of children and adolescent young adults with relapsed and refractory cancer: a report from the center for cancer research. Clin. Cancer Res. 2016 22 15 3810 3820 10.1158/1078‑0432.CCR‑15‑2717 26994145
    [Google Scholar]
  86. Izquierdo E. Yuan L. George S. Development of a targeted sequencing approach to identify prognostic, predictive and diagnostic markers in paediatric solid tumours. Oncotarget 2017 8 67 112036 112050 10.18632/oncotarget.23000 29340109
    [Google Scholar]
  87. Harttrampf A.C. Lacroix L. Deloger M. Molecular screening for cancer treatment optimization (MOSCATO-01) in pediatric patients: a single-institutional prospective molecular stratification trial. Clin. Cancer Res. 2017 23 20 6101 6112 10.1158/1078‑0432.CCR‑17‑0381 28733441
    [Google Scholar]
  88. Surrey L.F. MacFarland S.P. Chang F. Clinical utility of custom-designed NGS panel testing in pediatric tumors. Genome Med. 2019 11 1 32 10.1186/s13073‑019‑0644‑8 31133068
    [Google Scholar]
  89. Gröbner S.N. Worst B.C. Weischenfeldt J. The landscape of genomic alterations across childhood cancers. Nature 2018 555 7696 321 327 10.1038/nature25480 29489754
    [Google Scholar]
  90. Wong M. Mayoh C. Lau L.M.S. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 2020 26 11 1742 1753 10.1038/s41591‑020‑1072‑4 33020650
    [Google Scholar]
  91. Parsons D.W. Janeway K.A. Patton D.R. Actionable tumor alterations and treatment protocol enrollment of pediatric and young adult patients with refractory cancers in the National Cancer Institute–Children’s Oncology Group pediatric MATCH trial. J. Clin. Oncol. 2022 40 20 2224 2234 10.1200/JCO.21.02838 35353553
    [Google Scholar]
  92. Valeri N. Streamlining detection of fusion genes in colorectal cancer: Having “faith” in precision oncology in the (tissue)“agnostic” era. Cancer Res. 2019 79 6 1041 1043 10.1158/0008‑5472.CAN‑19‑0305 30877101
    [Google Scholar]
  93. Schmoll H.J. Targeting HER2: precision oncology for colorectal cancer. Lancet Oncol. 2016 17 6 685 686 10.1016/S1470‑2045(16)30039‑0 27108244
    [Google Scholar]
  94. Dankner M. Targeted therapy for colorectal cancers with non-V600 BRAF mutations: perspectives for precision oncology. JCO Precis. Oncol. 2018 2 2 1 12 10.1200/PO.18.00195 35135170
    [Google Scholar]
  95. Corti G. A genomic analysis workflow for colorectal cancer precision oncology. Clin. Colorectal Cancer 2019 18 2 91 101 10.1016/j.clcc.2019.02.008
    [Google Scholar]
  96. Di Nicolantonio F. Bardelli A. Precision oncology for KRASG12C-mutant colorectal cancer. Nat. Rev. Clin. Oncol. 2023 20 6 355 356 10.1038/s41571‑023‑00748‑z 36914743
    [Google Scholar]
  97. Buchholz S.M. Nause N. König U. Time to Deliver on Promises: The Role of ERBB2 Alterations as Treatment Options for Colorectal Cancer Patients in the Era of Precision Oncology. J. Pers. Med. 2023 13 12 1701 10.3390/jpm13121701 38138928
    [Google Scholar]
  98. Goel A. Boland C.R. Epigenetics of colorectal cancer. Gastroenterology 2012 143 6 1442 1460 10.1053/j.gastro.2012.09.032
    [Google Scholar]
  99. Toyota M. Ahuja N. Ohe-Toyota M. Herman J.G. Baylin S.B. Issa J.P.J. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA 1999 96 15 8681 8686 10.1073/pnas.96.15.8681 10411935
    [Google Scholar]
  100. Ogino S. Cantor M. Kawasaki T. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies. Gut 2006 55 7 1000 1006 10.1136/gut.2005.082933 16407376
    [Google Scholar]
  101. Kerachian M.A. Kerachian M. Long interspersed nucleotide element-1 (LINE-1) methylation in colorectal cancer. Clin. Chim. Acta 2019 488 209 214 10.1016/j.cca.2018.11.018 30445031
    [Google Scholar]
  102. Nagai Y. Sunami E. Yamamoto Y. LINE-1 hypomethylation status of circulating cell-free DNA in plasma as a biomarker for colorectal cancer. Oncotarget 2017 8 7 11906 11916 10.18632/oncotarget.14439 28060757
    [Google Scholar]
  103. deVos T. Tetzner R. Model F. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin. Chem. 2009 55 7 1337 1346 10.1373/clinchem.2008.115808 19406918
    [Google Scholar]
  104. Potter N.T. Hurban P. White M.N. Validation of a real-time PCR-based qualitative assay for the detection of methylated SEPT9 DNA in human plasma. Clin. Chem. 2014 60 9 1183 1191 10.1373/clinchem.2013.221044 24938752
    [Google Scholar]
  105. Song L. Jia J. Peng X. Xiao W. Li Y. The performance of the SEPT9 gene methylation assay and a comparison with other CRC screening tests: A meta-analysis. Sci. Rep. 2017 7 1 3032 10.1038/s41598‑017‑03321‑8 28596563
    [Google Scholar]
  106. He N. Song L. Kang Q. The pathological features of colorectal cancer determine the detection performance on blood ctDNA. Technol. Cancer Res. Treat. 2018 17 10.1177/1533033818791794 30223720
    [Google Scholar]
  107. Ned R.M. Melillo S. Marrone M. Fecal DNA testing for colorectal cancer screening: the ColoSure™ test. PLoS Curr. 2011 3 RRN1220 10.1371/currents.RRN1220 21487548
    [Google Scholar]
  108. Imperiale T.F. Ransohoff D.F. Itzkowitz S.H. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 2014 370 14 1287 1297 10.1056/NEJMoa1311194 24645800
    [Google Scholar]
  109. Chung H.H. Kuo C.C. Hsiao C.W. A novel prognostic DNA methylation panel for colorectal cancer. Int. J. Mol. Sci. 2019 20 19 4672 10.3390/ijms20194672 31547144
    [Google Scholar]
  110. Ouchi K. Takahashi S. Yamada Y. DNA methylation status as a biomarker of anti‐epidermal growth factor receptor treatment for metastatic colorectal cancer. Cancer Sci. 2015 106 12 1722 1729 10.1111/cas.12827 26426205
    [Google Scholar]
  111. Patel P. De P. Trends in colorectal cancer incidence and related lifestyle risk factors in 15-49-year-olds in Canada, 1969-2010. Cancer Epidemiol. 2016 42 90 100 10.1016/j.canep.2016.03.009 27060626
    [Google Scholar]
  112. Siegel R.L. Fedewa S.A. Anderson W.F. Colorectal cancer incidence patterns in the United States, 1974–2013. J. Natl. Cancer Inst. 2017 109 8 djw322 10.1093/jnci/djw322 28376186
    [Google Scholar]
  113. Young J.P. Win A.K. Rosty C. Rising incidence of early‐onset colorectal cancer in A ustralia over two decades: Report and review. J. Gastroenterol. Hepatol. 2015 30 1 6 13 10.1111/jgh.12792 25251195
    [Google Scholar]
  114. Keum N. Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019 16 12 713 732 10.1038/s41575‑019‑0189‑8 31455888
    [Google Scholar]
  115. Dienstmann R. Vermeulen L. Guinney J. Kopetz S. Tejpar S. Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 2017 17 2 79 92 10.1038/nrc.2016.126 28050011
    [Google Scholar]
  116. Schlicker A. Beran G. Chresta C.M. Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines. BMC Med. Genomics 2012 5 1 66 10.1186/1755‑8794‑5‑66 23272949
    [Google Scholar]
  117. Roepman P. Schlicker A. Tabernero J. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial‐to‐mesenchymal transition. Int. J. Cancer 2014 134 3 552 562 10.1002/ijc.28387 23852808
    [Google Scholar]
  118. Marisa L. de Reyniès A. Duval A. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013 10 5 e1001453 10.1371/journal.pmed.1001453 23700391
    [Google Scholar]
  119. De Sousa E. Melo F. Wang X. Jansen M. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat. Med. 2013 19 5 614 618 10.1038/nm.3174 23584090
    [Google Scholar]
  120. Wang H. Wang X. Xu L. Zhang J. Cao H. Analysis of the transcriptomic features of microsatellite instability subtype colon cancer. BMC Cancer 2019 19 1 605 10.1186/s12885‑019‑5802‑2 31221124
    [Google Scholar]
  121. Kim E. Jung S. Park W.S. Upregulation of SLC2A3 gene and prognosis in colorectal carcinoma: analysis of TCGA data. BMC Cancer 2019 19 1 302 10.1186/s12885‑019‑5475‑x 30943948
    [Google Scholar]
  122. Salazar R. Roepman P. Capella G. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J. Clin. Oncol. 2011 29 1 17 24 10.1200/JCO.2010.30.1077 21098318
    [Google Scholar]
  123. Cui Q. Xu Y. Zhang Z. Chan V. Max-linear regression models with regularization. J. Econom. 2021 222 1 579 600 10.1016/j.jeconom.2020.07.017
    [Google Scholar]
  124. Zhang Z. The existence of at least three genomic signature patterns and at least seven subtypes of COVID-19 and the end of the disease. Vaccines 2022 10 5 761 10.3390/vaccines10050761 35632517
    [Google Scholar]
  125. Liu Y. Xu Y. Li X. Towards precision oncology discovery: four less known genes and their unknown interactions as highest-performed biomarkers for colorectal cancer. NPJ Precis. Oncol. 2024 8 1 13 10.1038/s41698‑024‑00512‑1 38243058
    [Google Scholar]
  126. Mertins P. Mani D.R. Ruggles K.V. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 2016 534 7605 55 62 10.1038/nature18003 27251275
    [Google Scholar]
  127. Huang K. Li S. Mertins P. Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat. Commun. 2017 8 1 14864 10.1038/ncomms14864 28348404
    [Google Scholar]
  128. Vasaikar S. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 2019 177 4 1035 1049 10.1016/j.cell.2019.03.030
    [Google Scholar]
  129. Blank-Landeshammer B. Richard V.R. Mitsa G. Proteogenomics of colorectal cancer liver metastases: complementing precision oncology with phenotypic data. Cancers 2019 11 12 1907 10.3390/cancers11121907 31805664
    [Google Scholar]
  130. Mani D.R. Krug K. Zhang B. Cancer proteogenomics: current impact and future prospects. Nat. Rev. Cancer 2022 22 5 298 313 10.1038/s41568‑022‑00446‑5 35236940
    [Google Scholar]
  131. Rodriguez H. Zenklusen J.C. Staudt L.M. Doroshow J.H. Lowy D.R. The next horizon in precision oncology: Proteogenomics to inform cancer diagnosis and treatment. Cell 2021 184 7 1661 1670 10.1016/j.cell.2021.02.055 33798439
    [Google Scholar]
  132. Dou Y. Katsnelson L. Zhang B. Fenyö D. Liu T. Proteogenomics unveils mechanistic insights to precision oncology. Clin. Transl. Med. 2023 13 11 e1477 10.1002/ctm2.1477 38009415
    [Google Scholar]
  133. Rodriguez H. Pennington S.R. Revolutionizing precision oncology through collaborative proteogenomics and data sharing. Cell 2018 173 3 535 539 10.1016/j.cell.2018.04.008 29677503
    [Google Scholar]
  134. van Griethuysen J.J.M. Fedorov A. Parmar C. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017 77 21 e104 e107 10.1158/0008‑5472.CAN‑17‑0339 29092951
    [Google Scholar]
  135. Aerts H.J.W.L. Velazquez E.R. Leijenaar R.T.H. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014 5 1 4006 10.1038/ncomms5006 24892406
    [Google Scholar]
  136. Kuo M.D. Gollub J. Sirlin C.B. Ooi C. Chen X. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J. Vasc. Interv. Radiol. 2007 18 7 821 830 10.1016/j.jvir.2007.04.031 17609439
    [Google Scholar]
  137. Kamran S.C. Mouw K.W. Applying precision oncology principles in radiation oncology. JCO Precis. Oncol. 2018 2 2 1 23 10.1200/PO.18.00034 32914000
    [Google Scholar]
  138. Nielson C.M. Petrik A.F. Jacob L. Positive predictive values of fecal immunochemical tests used in the STOP CRC pragmatic trial. Cancer Med. 2018 7 9 4781 4790 10.1002/cam4.1727 30101513
    [Google Scholar]
  139. Robertson D.J. Recommendations on fecal immunochemical testing to screen for colorectal neoplasia: A consensus statement by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2017 152 5 1217 1237 10.1053/j.gastro.2016.08.053 27769517
    [Google Scholar]
  140. Saraceni A.F. Azevedo R. Almeida C.M.G. Baraviera A.C. Kiss D.R. Almeida M.G. Association of fecal occult blood tests results with colonoscopic findings in a general hospital and validation of the screening test. J. Coloproctol. 2019 39 2 121 126 10.1016/j.jcol.2018.10.011
    [Google Scholar]
  141. Bouatra S. Aziat F. Mandal R. The human urine metabolome. PLoS One 2013 8 9 e73076 10.1371/journal.pone.0073076 24023812
    [Google Scholar]
  142. Vignoli A. Ghini V. Meoni G. High‐Throughput Metabolomics by 1D NMR. Angew. Chem. Int. Ed. 2019 58 4 968 994 10.1002/anie.201804736 29999221
    [Google Scholar]
  143. Zhang A. Sun H. Wang P. Han Y. Wang X. Modern analytical techniques in metabolomics analysis. Analyst 2012 137 2 293 300 10.1039/C1AN15605E 22102985
    [Google Scholar]
  144. Collins F.S. Varmus H. A new initiative on precision medicine. N. Engl. J. Med. 2015 372 9 793 795 10.1056/NEJMp1500523 25635347
    [Google Scholar]
  145. Tolstikov V. Moser A.J. Sarangarajan R. Narain N.R. Kiebish M.A. Current status of metabolomic biomarker discovery: impact of study design and demographic characteristics. Metabolites 2020 10 6 224 10.3390/metabo10060224 32485899
    [Google Scholar]
  146. Shah P. Kendall F. Khozin S. Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit. Med. 2019 2 1 69 10.1038/s41746‑019‑0148‑3 31372505
    [Google Scholar]
  147. Mussap M. Noto A. Piras C. Atzori L. Fanos V. Slotting metabolomics into routine precision medicine. Expert Rev. Precis. Med. Drug Dev. 2021 6 3 173 187 10.1080/23808993.2021.1911639
    [Google Scholar]
  148. Wolpin B.M. Mayer R.J. Systemic treatment of colorectal cancer. Gastroenterology 2008 134 5 1296 1310 10.1053/j.gastro.2008.02.098
    [Google Scholar]
  149. Crooke H. Estimating 1-and 5-year relative survival trends in colorectal cancer (CRC) in the United States: 2004 to 2014. J. Clin. Oncol. 2018 36 4 587 10.1200/JCO.2018.36.4_suppl.587
    [Google Scholar]
  150. Kim S.Y. Kim T.W. Current challenges in the implementation of precision oncology for the management of metastatic colorectal cancer. ESMO Open 2020 5 2 e000634 10.1136/esmoopen‑2019‑000634 32188714
    [Google Scholar]
  151. Innocenti F. Ou F.S. Qu X. Mutational analysis of patients with colorectal cancer in CALGB/SWOG 80405 identifies new roles of microsatellite instability and tumor mutational burden for patient outcome. J. Clin. Oncol. 2019 37 14 1217 1227 10.1200/JCO.18.01798 30865548
    [Google Scholar]
  152. Wirapati P. Pomella V. Vandenbosch B. VELOUR trial biomarkers update: Impact of RAS, BRAF, and sidedness on aflibercept activity. Ann. Oncol. 2017 28 iii151 iii152 10.1093/annonc/mdx302.004
    [Google Scholar]
  153. Hurwitz H.I. Yi J. Ince W. Novotny W.F. Rosen O. The clinical benefit of bevacizumab in metastatic colorectal cancer is independent of K-ras mutation status: analysis of a phase III study of bevacizumab with chemotherapy in previously untreated metastatic colorectal cancer. Oncologist 2009 14 1 22 28 10.1634/theoncologist.2008‑0213 19144677
    [Google Scholar]
  154. Kim T.W. Elme A. Park J.O. Final analysis of outcomes and RAS/BRAF status in a randomized phase 3 study of panitumumab and best supportive care in chemorefractory wild type KRAS metastatic colorectal cancer. Clin. Colorectal Cancer 2018 17 3 206 214 10.1016/j.clcc.2018.03.008 29703606
    [Google Scholar]
  155. Price T.J. Bruhn M.A. Lee C.K. Correlation of extended RAS and PIK3CA gene mutation status with outcomes from the phase III AGITG MAX STUDY involving capecitabine alone or in combination with bevacizumab plus or minus mitomycin C in advanced colorectal cancer. Br. J. Cancer 2015 112 6 963 970 10.1038/bjc.2015.37 25742472
    [Google Scholar]
  156. Lenz H.J. Ou F.S. Venook A.P. Impact of consensus molecular subtype on survival in patients with metastatic colorectal cancer: results from CALGB/SWOG 80405 (Alliance). J. Clin. Oncol. 2019 37 22 1876 1885 10.1200/JCO.18.02258 31042420
    [Google Scholar]
  157. Tabernero J. Hozak R.R. Yoshino T. Analysis of angiogenesis biomarkers for ramucirumab efficacy in patients with metastatic colorectal cancer from RAISE, a global, randomized, double-blind, phase III study. Ann. Oncol. 2018 29 3 602 609 10.1093/annonc/mdx767 29228087
    [Google Scholar]
  158. Karapetis C.S. Jonker D. Daneshmand M. PIK3CA, BRAF, and PTEN status and benefit from cetuximab in the treatment of advanced colorectal cancer--results from NCIC CTG/AGITG CO.17. Clin. Cancer Res. 2014 20 3 744 753 10.1158/1078‑0432.CCR‑13‑0606 24218517
    [Google Scholar]
  159. Laurent-Puig P. Grisoni M.L. Heinemann V. Validation of miR-31-3p expression to predict cetuximab efficacy when used as first-line treatment in RAS wild-type metastatic colorectal cancer. Clin. Cancer Res. 2019 25 1 134 141 10.1158/1078‑0432.CCR‑18‑1324 30108104
    [Google Scholar]
  160. Miller-Phillips L. Association of microRNA-21 with efficacy of cetuximab in RAS wild-type patients in the FIRE-3 study (AIO KRK-0306) and microRNA-21’s influence on gene expression in the EGFR signaling pathway. J. Clin. Oncol. 2019 37 15 3593 10.1200/JCO.2019.37.15_suppl.3593
    [Google Scholar]
  161. Nixon A.B. Blood-based biomarkers in patients (pts) with metastatic colorectal cancer (mCRC) treated with FOLFOX or FOLFIRI plus bevacizumab (Bev), cetuximab (Cetux), or Bev plus Cetux: Results from CALGB 80405 (Alliance). J. Clin. Oncol. 2016 34 15 3597 10.1200/JCO.2016.34.15_suppl.3597
    [Google Scholar]
  162. Berger M.D. Genetic variations within the vitamin C transporter genes to predict outcome in metastatic colorectal cancer patients treated with first-line FOLFIRI and bevacizumab: Data from FIRE-3 trial. J. Clin. Oncol. 2017 35 15 11507 10.1200/JCO.2017.35.15_suppl.11507
    [Google Scholar]
  163. Stintzing S. Amphiregulin (AREG) SNP rs161511 to predict cetuximab efficacy independent of AREG mRNA levels: Data from FIRE3 (AIO KRK-0306). J. Clin. Oncol. 2014 32 15 3521 10.1200/jco.2014.32.15_suppl.3521
    [Google Scholar]
  164. Fontana E. Eason K. Cervantes A. Salazar R. Sadanandam A. Context matters-consensus molecular subtypes of colorectal cancer as biomarkers for clinical trials. Ann. Oncol. 2019 30 4 520 527 10.1093/annonc/mdz052 30796810
    [Google Scholar]
  165. André F. Arnedos M. Baras A.S. AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov. 2017 7 8 818 831 10.1158/2159‑8290.CD‑17‑0151 28572459
    [Google Scholar]
  166. Ciardiello D. Vitiello P.P. Cardone C. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 76 22 32 10.1016/j.ctrv.2019.04.003 31079031
    [Google Scholar]
/content/journals/cas/10.2174/0118746098348122241024061610
Loading
/content/journals/cas/10.2174/0118746098348122241024061610
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: omics ; Colorectal cancer ; targeted therapy ; precision oncology ; biomarkers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test