Skip to content
2000
Volume 9, Issue 8
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

It has been hypothesized that pro-inflammatory cytokines may play a pathogenic role in Alzheimer's disease (AD), and that n-3 polyunsaturated fatty acids may be protective against the development and progression of this disease. A reduced release of inflammatory cytokines by lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) from AD patients dietary supplemented with a mixture of eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) was recently reported. On this basis, we investigated the possible differential effects of the two purified fatty acids on inflammatory cytokine release, a subject still not explored, even though of great pharmacological interest. We treated in vitro phytohaemagglutinin (PHA)- or LPS-stimulated PBMCs from AD patients and age-matched healthy controls (HCs) with purified EPA or DHA. Higher pro- to anti-inflammatory cytokine ratios, indicative of a pro-inflammatory profile, were observed in PHA-stimulated PBMCs from AD patients in basal conditions. The addition of both EPA and DHA markedly reduced the cytokine release, with DHA showing always a more prominent effect than EPA. However, whereas DHA reduced only the high IL-1β/IL-10 ratio, EPA was able to reduce also the IL-6/IL-10 ratio. In stimulated PMBCs from HCs the reducing effect on cytokine release was not always observed, or observed at a lower degree. In conclusion, whereas DHA appeared more powerful in inhibiting each single inflammatory cytokine, the proinflammatory profile of the AD patients' cells was better reverted by EPA to a profile more similar to that found in HCs. A combination of both the fatty acids, seems to be still the best solution.

Loading

Article metrics loading...

/content/journals/car/10.2174/156720512803251147
2012-10-01
2025-05-02
Loading full text...

Full text loading...

/content/journals/car/10.2174/156720512803251147
Loading

  • Article Type:
    Research Article
Keyword(s): Alzheimer's disease; cytokines; DHA; EPA; HCs; inflammation; PBMCs; PUFAs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test