Skip to content
2000
Volume 6, Issue 3
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Since their first description by Ramon y Cajal at the end of the 19th century, dendritic spines have been proposed as important sites of neuronal contacts and it has been suggested that changes in the activity of neurons directly affect spine morphology. In fact, since then it has been shown that about 90% of excitatory synapses end on spines. Recent data indicate that spines are highly dynamic structures and that spine shape correlates with the strength of synaptic transmission. Furthermore, several mental disorders including Alzheimer's disease (AD) are associated with spine pathology suggesting that spine alterations play a central role in mental deficits. The aim of this review is to provide an overview about the current knowledge on spine morphology and function as well as about different experimental models to analyze spine changes and dynamics. The second part concentrates on disease-relevant factors that are associated with AD and which lead to spine alterations. In particular, data that provide evidence that Aβ oligomers or fibrillar Aβ deposits influence spine morphology and function will be presented and the contribution of tau pathology will be discussed. The review ends with the discussion of potential mechanisms how disease-relevant factors influence dendritic spines and whether and how spine changes could be therapeutically suppressed or reversed.

Loading

Article metrics loading...

/content/journals/car/10.2174/156720509788486554
2009-06-01
2025-04-03
Loading full text...

Full text loading...

/content/journals/car/10.2174/156720509788486554
Loading

  • Article Type:
    Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test