Skip to content
2000
Volume 5, Issue 6
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

The amyloid cascade hypothesis is well known hypothesis describing the pathogenesis of Alzheimer's disease (AD). On the basis of this hypothesis, inhibition of amyloid β-protein (Aβ) generation and aggregation, enhancement of extracellular Aβ removal, and Aβ vaccination are currently under investigation. Intracellular Aβ may be even more important than extracellular Aβ, since intraneuronal Aβ accumulation commonly precedes extracellular Aβ deposition in several familial AD-related mutant presenilin 1-transgenic mice. Various pathogenic mechanisms involving intracellular Aβ such as mitochondrial toxicity, proteasome impairment and synaptic damage have been suggested. Recently, we have reported that cytosolic Aβ42 accumulation leads to p53 mRNA expression and p53-related apoptosis. It was also reported that a novel chaperone protein, Aβ-related death-inducing protein (AB-DIP), regulates nuclear localization of intracellular Aβ42. Therefore, intraneuronal Aβ represents an alternative therapeutic target. While inhibition of Aβ production and anti-Aβ immunotherapies are likely to attenuate both intraneuronal and extracellular Aβ toxicity, more specific antiintraneuronal Aβ therapies should be useful. The focus of this article is to review the pathogenic mechanisms involving intracellular Aβ and advocate intracellular Aβ as an important therapeutic target in AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/156720508786898514
2008-12-01
2025-04-09
Loading full text...

Full text loading...

/content/journals/car/10.2174/156720508786898514
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test