Skip to content
2000
Volume 3, Issue 5
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Major hallmarks of Alzheimer's disease (AD) include brain deposition of the amyloid-β peptide (Aβ), which is proteolytically cleaved from a large Aβ precursor protein (APP) by β and β- secretases. A transmembrane aspartyl protease, β-APP cleaving enzyme (BACE1), has been recognized as the β-secretase. We review the structure and function of the BACE1 protein, and of 4129 bp of the 5'-flanking region sequence of the BACE1 gene and its interaction with various transcription factors involved in cell signaling. The promoter region and 5'-untranslated region (UTR) contain multiple transcription factor binding sites, such as AP-1, CREB and MEF2. A 91 bp fragment is the shortest region with significant reporter gene activity and constitutes the minimal promoter element for BACE1. The BACE1 promoter contains six unique functional domains and three structural domains of increasing sequence complexity as the “ATG” start codon is approached. Notably, the BACE1 gene promoter contains basal regulatory elements, inducible features and sites for regulation by various important transcription factors. Herein, we also discuss and speculate how the interaction of these transcription factors with the BACE1 promoter can modulate synaptic plasticity, neuronal apoptosis and oxidative stress, which are pertinent to the pathogenesis and progression of AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/156720506779025224
2006-12-01
2025-05-08
Loading full text...

Full text loading...

/content/journals/car/10.2174/156720506779025224
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test