Skip to content
2000
Volume 3, Issue 5
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Mitochondrial dysfunction has been implicated in causing metabolic abnormalities in Alzheimer's disease (AD). The searches for mitochondrial DNA variants associated with AD susceptibility have generated conflicting results. The age-related accumulation of somatic mitochondrial DNA deletion has been suggested to play a pathogenic role in the development of AD. Recent studies have demonstrated that amyloid-beta peptide (Aβ) progressively accumulates in mitochndrial matrix, as demonstrated in both transgenic mice over-expressing mutant amyloid precursor protein (APP) and autopsy brain from AD patients. Aβ-mediated mitochondrial stress was evidenced by impaired oxygen consumption and decreased respiratory chain complexes III and IV activities in brains from AD patients and AD-type transgenic mouse model. Furthermore, our studies indicated that interaction of intramitochondrial Aβ with a mitochondrial enzyme, amyloid binding alcohol dehydrogenase (ABAD), inhibits its enzyme activity, enhances generation of reactive oxygen species (ROS), impairs energy metabolism, and exaggerates Aβ-induced spatial learning/memory deficits and neuropathological changes in transgenic AD-type mouse model. Interception of ABAD-Aβ interaction may be a potential therapeutic strategy for Alzheimer's disease.

Loading

Article metrics loading...

/content/journals/car/10.2174/156720506779025215
2006-12-01
2025-05-08
Loading full text...

Full text loading...

/content/journals/car/10.2174/156720506779025215
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test