Skip to content
2000
Volume 18, Issue 7
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background and Objective: Type 2 Diabetes (T2D) patients are more prone to develop Alzheimer’s Disease (AD). We have previously shown that Glucagon-like peptide-1 receptor agonist exendin-4 (Ex-4) reduces tau hyperphosphorylation in T2D animals through upregulating insulin signaling, and peripheral injected Ex-4 increases insulin levels in the T2D brain. This study aims to further clarify whether the elevated insulin in the brain is produced by nerve cells under the action of Ex-4. Methods: The neuronal cell line-HT22 was treated with Ex-4 under high glucose or normal cultivation, and the number of insulin-positive cells as well as the expression levels of insulin synthesis-related genes were examined. The db/db mice were treated with the peripheral injection of Ex-4 and/or IntraCerebroVentricular (ICV) injection of siRNA to inhibit the expression of insulin synthesis- related genes and the behavior tests were carried on. Finally, plasma glucose, Cerebrospinal Fluid (CSF) glucose, CSF insulin, phosphorylation of tau, phosphorylation of AKT and GSK-3β of db/db mice were detected. Results: We found that Ex-4 promoted the expression of insulin synthesis-related genes and induced an obvious increase of insulin-positive HT-22 neuronal cells in a high glucose environment. Peripheral injection of Ex-4 improved the cognitive function of db/db mice and increased brain insulin levels which activated brain insulin signaling and subsequently alleviated tau hyperphosphorylation. However, when siRNA-neurod1 was injected to block insulin synthesis, the cognitive function of db/db mice was not improved under the action of Ex-4 anymore. Moreover, the brain insulin levels dropped to an extremely low level, and the phosphorylation level of tau increased significantly. Conclusion: This study demonstrated that Ex-4 improved cognition function by promoting brain insulin synthesis followed by the activation of brain insulin signaling and alleviation of tau hyperphosphorylation.

Loading

Article metrics loading...

/content/journals/car/10.2174/1567205018666210929150004
2021-06-01
2025-04-11
Loading full text...

Full text loading...

/content/journals/car/10.2174/1567205018666210929150004
Loading

  • Article Type:
    Research Article
Keyword(s): Alzheimer's disease; db/db; exendin-4; glucagon-like peptide-1; insulin; Type 2 diabetes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test