Skip to content
2000
Volume 16, Issue 6
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background: Neuroinflammation has important effects on cognitive functions in the pathophysiological process of Alzheimer’s Disease (AD). In the current report, we determined the effects of microRNA-155 (miR-155) on the levels of IL-1β, IL-6 and TNF-α, and their respective receptors in the hippocampus using a rat model of AD. Methods: Real-time RT-PCR, ELISA and western blot analysis were used to examine the miR-155, PICs and PIC receptors. The Morris water maze and spatial working memory tests were used to assess cognitive functions. Results: miR-155 was increased in the hippocampus of AD rats, accompanied by amplification of IL-1β, IL-6 and TNF-α. Intracerebroventricular infusion of miR-155 inhibitor, but not its scramble attenuated the increases of IL-1β, IL-6 and TNF-α and upregulation of their receptors. MiR-155 inhibitor also attenuated upregulation of apoptotic Caspase-3 in the hippocampus of AD rats. Notably, inhibition of miR- 155 or PIC receptors largely recovered the impaired learning performance in AD rat. Conclusion: We showed the critical role of miR-155 in regulating the memory impairment in AD rats likely via engagement of neuroinflammatory mechanisms, suggesting that miR-155 and its signaling molecules may present prospects in preventing and/or improving the development of the impaired cognitive functions in AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/1567205016666190503145207
2019-05-01
2025-07-04
Loading full text...

Full text loading...

/content/journals/car/10.2174/1567205016666190503145207
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test