Skip to content
2000
Volume 14, Issue 12
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background: Alzheimer's disease (AD), a common protein misfolding progressive neurodegenerative disorder, is one of the most common forms of dementia. Amyloid precursor protein (APP) derived amyloid-β (Aβ) protein accumulate into interneuronal spaces and plays a crucial role in the disease progression and its pathology. The aggregated Aβ exerts its neurotoxic effects by inducing apoptosis and oxidative damage in neuronal cells. Objectives: We have investigated the effects of a synthesized Pro-Drug peptide (PDp) on Aβ1-40 induced cytotoxicity in human neuroblastoma SH-SY5Y cells, represents one of the most effective strategies in combating human AD. Methods: Cells were treated with Aβ1-40 to induce cytotoxicity in the experimental model of AD to screen the inhibitory effect of PDp. Assays for cell viability, reactive oxygen species (ROS) generation, levels of intracellular free Ca2+ and expression of key apoptotic proteins were assessed by Western Blotting. Results: Our results showed that Aβ1-40 induces for 24h caused reduce cell viability, imbalance in Ca2+ homeostasis and increase in neuronal apoptosis in vitro. Treatment with PDp could effectively ameliorated Aβ1-40 induced neurotoxicity and attenuates ROS generation that mediates apoptotic signaling through Bcl-2, Bax, Caspase-3 activity and cytochrome c in the cells. Conclusion: These findings suggested that PDp has potential role as a neuroprotective and therapeutic agent for combating human AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/1567205014666170713153414
2017-12-01
2025-04-22
Loading full text...

Full text loading...

/content/journals/car/10.2174/1567205014666170713153414
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test