Skip to content
2000
Volume 14, Issue 8
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background: In addition to cognitive decline, Alzheimer’s Disease (AD) is also characterized by agitation and disruptions in activity and sleep. These symptoms typically occur in the evening or night and have been referred to as ‘sundowning’. They are especially difficult for carers and there are no specific drug treatments. There is increasing evidence that these symptoms reflect pathology of circadian rhythm generation and transmission. Objective: We investigated whether a transgenic mouse model relevant to AD (APPswe/PS1dE9) exhibits circadian alterations in locomotor activity in their home cage and whether expression of clock genes involved in the regulation of the circadian cycle is abnormal in the hippocampus and medulla-pons brain regions isolated from these mice. Results: In 2month old female mice the APPswe/PS1dE9 transgene alters levels and patterns in circadian rhythm of locomotor activity. Expression of the clock genes Per1, Per2, Cry1 and Cry2 was found to increase at night compared to day in wild-type control mice in the medulla/pons. This effect was blunted for Cry1 and Cry2 gene expression in APPswe/PS1dE9. Conclusion: This study suggests altered circadian regulation of locomotor activity is abnormal in female APPswe/ PS1dE9 mice and that this alteration has biomolecular analogies in a widely available model of AD. The early age at which these effects are manifest suggests that these circadian effects may precede plaque development. The APPswe/PS1dE9 mouse genetic model may have potential to serve as a tool in understanding the neuropathology of circadian abnormalities in AD and as a model system to test novel therapeutic agents for these symptoms.

Loading

Article metrics loading...

/content/journals/car/10.2174/1567205014666170317113159
2017-08-01
2025-06-21
Loading full text...

Full text loading...

/content/journals/car/10.2174/1567205014666170317113159
Loading

  • Article Type:
    Research Article
Keyword(s): Alzheimer's Disease; APPswe/PS1dE9 mice; Bmal; circadian; clock genes; Cry1; Cry2; Per1; Per2; Rev- Erbβ; Rev-Erb
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test