Skip to content
2000
Volume 11, Issue 7
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Metabotropic glutamate receptor 5 (mGluR5) is highly expressed throughout the forebrain and hippocampus. Several lines of evidence support the role of this receptor in brain development and developmental disorders, as well as in neurodegenerative disorders like Alzheimer’s disease (AD). In the present study, the expression pattern of mGluR5 was investigated by immunocytochemistry in the developing hippocampus from patients with Down's syndrome (DS) and in adults with DS and AD. mGluR5 was expressed in developing human hippocampus from the earliest stages tested (9 gestational weeks), with strong expression in the ventricular/subventricular zones. We observed a consistent similar temporal and spatial neuronal pattern of expression in DS hippocampus. However, in DS we detected increased prenatal mGluR5 expression in white matter astrocytes, which persisted postnatally. In addition, in adult DS patients with widespread ADassociated neurodegeneration (DS-AD) increased mGluR5 expression was detected in astrocytes around amyloid plaque. In vitro data confirm the existence of a modulatory crosstalk between amyloid-β and mGluR5 in human astrocytes. These findings demonstrate a developmental regulation of mGluR5 in human hippocampus and suggest a role for this receptor in astrocytes during early development in DS hippocampus, as well as a potential contribution to the pathogenesis of ADassociated pathology.

Loading

Article metrics loading...

/content/journals/car/10.2174/1567205011666140812115423
2014-09-01
2025-04-22
Loading full text...

Full text loading...

/content/journals/car/10.2174/1567205011666140812115423
Loading

  • Article Type:
    Research Article
Keyword(s): Alzheimer's disease; astrocytes; development; Down's syndrome; hippocampus; mGluR5
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test