Skip to content
2000
Volume 10, Issue 2
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer disease (AD) is one of the most common and serious neurodegenerative disorders in humans. For this reason, the search for new anti-AD treatments is a very active area. Only few biological receptors associated with AD have been well studied. The efficacy of the current drugs is limited by the fact that they inhibit only one target like protein. Thus, the rational design of new drug candidates as versatile inhibitors for different proteins associated with AD, constitutes a major goal. With the aim to overcome this problem, we developed here the first fragment-based approach by exploring quantitative-structure-activity relationships (QSAR). The principal purpose was the in silico design of multitarget (mt) inhibitors against five proteins associated with AD. Our approach was focused on the construction of an mt- QSAR discriminant model using a large and heterogeneous database of compounds and substructural descriptors, which permitted the simultaneous classification and prediction of inhibitors against five proteins associated with AD. The model correctly classified more than 90% of active and inactive compounds in both, training and prediction series. As principal advantage, this mt-QSAR discriminant model was used for the automatic and fast extraction of fragments responsible for the inhibitory activity against the five proteins under study, and new molecular entities were suggested as possible versatile inhibitors for these proteins.

Loading

Article metrics loading...

/content/journals/car/10.2174/1567205011310020001
2013-02-01
2025-05-12
Loading full text...

Full text loading...

/content/journals/car/10.2174/1567205011310020001
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test