Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Alzheimer’s disease (AD) represents the most common neurodegenerative disorder, characterized by progressive cognitive decline and memory loss. Despite the recognition of mitochondrial dysfunction as a critical factor in the pathogenesis of AD, the specific molecular mechanisms remain largely undefined.

Methods

This study aimed to identify novel biomarkers and therapeutic strategies associated with mitochondrial dysfunction in AD by employing bioinformatics combined with machine learning methodologies. We performed Weighted Gene Co-expression Network Analysis (WGCNA) utilizing gene expression data from the NCBI Gene Expression Omnibus (GEO) database and isolated mitochondria-related genes through the MitoCarta3.0 database. By intersecting WGCNA-derived module genes with identified mitochondrial genes, we compiled a list of 60 mitochondrial dysfunction-related genes (MRGs) significantly enriched in pathways pertinent to mitochondrial function, such as the citrate cycle and oxidative phosphorylation.

Results

Employing machine learning techniques, including random forest and LASSO, along with the CytoHubba algorithm, we identified key genes with strong diagnostic potential, such as ACO2, CS, MRPS27, SDHA, SLC25A20, and SYNJ2BP, verified through ROC analysis. Furthermore, an interaction network involving miRNA-MRGs-transcription factors and a protein-drug interaction network revealed potential therapeutic compounds such as Congo red and kynurenic acid that target MRGs.

Conclusion

These findings delineate the intricate role of mitochondrial dysfunction in AD and highlight promising avenues for further exploration of biomarkers and therapeutic interventions in this devastating disease.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050353736241218054012
2024-12-26
2025-07-14
The full text of this item is not currently available.

References

  1. GibbsD.M. Alzheimer’s dementia or alzheimer’s disease – What’s the difference and why should we care?Ageing Res. Rev.20228210177910.1016/j.arr.2022.10177936332757
    [Google Scholar]
  2. AthanasakiA. MelanisK. TsantzaliI. StefanouM.I. NtymenouS. ParaskevasS.G. KalamatianosT. BoutatiE. LambadiariV. VoumvourakisK.I. StranjalisG. GiannopoulosS. TsivgoulisG. ParaskevasG.P. Type 2 diabetes mellitus as a risk factor for alzheimer’s disease: Review and meta-analysis.Biomedicines202210477810.3390/biomedicines1004077835453527
    [Google Scholar]
  3. AshleighT. SwerdlowR.H. BealM.F. The role of mitochondrial dysfunction in alzheimer’s disease pathogenesis.Alzheimers Dement.202319133334210.1002/alz.1268335522844
    [Google Scholar]
  4. Perez OJ.M. SwerdlowR.H. Mitochondrial dysfunction in alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities.Br. J. Pharmacol.2019176183489350710.1111/bph.1458530675901
    [Google Scholar]
  5. SinghM. AgarwalV. PanchamP. JindalD. AgarwalS. RaiS. SinghS. GuptaV. A comprehensive review and androgen deprivation therapy and its impact on alzheimer’s disease risk in older men with prostate cancer.Degener. Neurol. Neuromuscul. Dis.202414334610.2147/DNND.S44513038774717
    [Google Scholar]
  6. CummingsJ. LeeG. RitterA. SabbaghM. ZhongK. Alzheimer’s disease drug development pipelineAlzheimers Dement. (N. Y.)20195127229310.1016/j.trci.2019.05.00831334330
    [Google Scholar]
  7. EganM.F. KostJ. VossT. MukaiY. AisenP.S. CummingsJ.L. TariotP.N. VellasB. van DyckC.H. BoadaM. ZhangY. LiW. FurtekC. MahoneyE. Harper MozleyL. MoY. SurC. MichelsonD. Randomized trial of verubecestat for prodromal alzheimer’s disease.N. Engl. J. Med.2019380151408142010.1056/NEJMoa181284030970186
    [Google Scholar]
  8. HonigL.S. VellasB. WoodwardM. BoadaM. BullockR. BorrieM. HagerK. AndreasenN. ScarpiniE. Liu-SeifertH. CaseM. DeanR.A. HakeA. SundellK. Poole HoffmannV. CarlsonC. KhannaR. MintunM. DeMattosR. SelzlerK.J. SiemersE. Trial of Solanezumab for mild dementia due to alzheimer’s disease.N. Engl. J. Med.2018378432133010.1056/NEJMoa170597129365294
    [Google Scholar]
  9. TripathiP.N. SrivastavaP. SharmaP. TripathiM.K. SethA. TripathiA. RaiS.N. SinghS.P. ShrivastavaS.K. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory.Bioorg. Chem.201985829610.1016/j.bioorg.2018.12.01730605887
    [Google Scholar]
  10. SrivastavaP. TripathiP.N. SharmaP. RaiS.N. SinghS.P. SrivastavaR.K. ShankarS. ShrivastavaS.K. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory.Eur. J. Med. Chem.201916311613510.1016/j.ejmech.2018.11.04930503937
    [Google Scholar]
  11. RamakrishnaK. KaruturiP. SiakabingaQ. G.T.A. KrishnamurthyS. SinghS. KumariS. KumarG.S. SobhiaM.E. RaiS.N. Indole-3 carbinol and Diindolylmethane Mitigated β-Amyloid-induced Neurotoxicity and Acetylcholinesterase enzyme activity: In silico, in vitro, and network pharmacology study.Diseases202412184
    [Google Scholar]
  12. GolpichM. AminiE. MohamedZ. Azman AR. Mohamed IN. AhmadianiA. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment.CNS Neurosci. Ther.201723152210.1111/cns.1265527873462
    [Google Scholar]
  13. SharmaC. KimS. NamY. JungU.J. KimS.R. Mitochondrial dysfunction as a driver of cognitive impairment in alzheimer’s disease.Int. J. Mol. Sci.2021229485010.3390/ijms2209485034063708
    [Google Scholar]
  14. RaiS.N. SinghC. SinghA. SinghM.P. SinghB.K. Mitochondrial dysfunction: A potential therapeutic target to treat alzheimer’s disease.Mol. Neurobiol.20205773075308810.1007/s12035‑020‑01945‑y32462551
    [Google Scholar]
  15. ArnstN. RedolfiN. LiaA. BedettaM. GreottiE. PizzoP. Mitochondrial Ca2+ signaling and bioenergetics in alzheimer’s disease.Biomedicines20221012302510.3390/biomedicines1012302536551781
    [Google Scholar]
  16. JurcăuM.C. Andronie-CioaraF.L. JurcăuA. MarcuF. ŢițD.M. PașcalăuN. Nistor-CseppentöD.C. The link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of alzheimer’s disease: Therapeutic implications and future perspectives.Antioxidants20221111216710.3390/antiox1111216736358538
    [Google Scholar]
  17. SwerdlowR.H. Mitochondria and mitochondrial cascades in alzheimer’s disease.J. Alzheimers Dis.20186231403141610.3233/JAD‑17058529036828
    [Google Scholar]
  18. GaoJ. WangL. LiuJ. XieF. SuB. WangX. Abnormalities of mitochondrial dynamics in neurodegenerative diseases.Antioxidants2017622510.3390/antiox602002528379197
    [Google Scholar]
  19. LinM.T. BealM.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases.Nature2006443711378779510.1038/nature0529217051205
    [Google Scholar]
  20. WeidlingI. SwerdlowR.H. Mitochondrial dysfunction and stress responses in alzheimer’s disease.Biology (Basel)2019823910.3390/biology802003931083585
    [Google Scholar]
  21. PirasI.S. KrateJ. DelvauxE. NolzJ. MastroeniD.F. PersicoA.M. JepsenW.M. BeachT.G. HuentelmanM.J. ColemanP.D. Transcriptome changes in the alzheimer’s disease middle Temporal Gyrus: Importance of RNA metabolism and mitochondria-associated membrane genes.J. Alzheimers Dis.201970369171310.3233/JAD‑18111331256118
    [Google Scholar]
  22. LiangW.S. DunckleyT. BeachT.G. GroverA. MastroeniD. WalkerD.G. CaselliR.J. KukullW.A. McKeelD. MorrisJ.C. HuletteC. SchmechelD. AlexanderG.E. ReimanE.M. RogersJ. StephanD.A. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain.Physiol. Genomics200728331132210.1152/physiolgenomics.00208.200617077275
    [Google Scholar]
  23. ReadheadB. Haure-MirandeJ.V. FunkC.C. RichardsM.A. ShannonP. HaroutunianV. SanoM. LiangW.S. BeckmannN.D. PriceN.D. ReimanE.M. SchadtE.E. EhrlichM.E. GandyS. DudleyJ.T. Multiscale analysis of independent alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human Herpesvirus.Neuron20189916482.e710.1016/j.neuron.2018.05.02329937276
    [Google Scholar]
  24. WangB. FuC. WeiY. XuB. YangR. LiC. QiuM. YinY. QinD. Ferroptosis-related biomarkers for alzheimer’s disease: Identification by bioinformatic analysis in hippocampus.Front. Cell. Neurosci.202216102394710.3389/fncel.2022.102394736467613
    [Google Scholar]
  25. HamarshaA. BalachandranK. SailanA.T. NasruddinN.S. Predicting key genes and therapeutic molecular modelling to explain the association between Porphyromonas gingivalis (P. gingivalis) and alzheimer’s disease (AD).Int. J. Mol. Sci.2023246543210.3390/ijms2406543236982508
    [Google Scholar]
  26. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e47e4710.1093/nar/gkv00725605792
    [Google Scholar]
  27. GautierL. CopeL. BolstadB.M. IrizarryR.A. affy—analysis of Affymetrix GeneChip data at the probe level.Bioinformatics200420330731510.1093/bioinformatics/btg40514960456
    [Google Scholar]
  28. WuT. HuE. XuS. ChenM. GuoP. DaiZ. FengT. ZhouL. TangW. ZhanL. FuX. LiuS. BoX. YuG. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.Innovation (Camb.)20212310014110.1016/j.xinn.2021.10014134557778
    [Google Scholar]
  29. ChenH. BoutrosP.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R.BMC Bioinformatics20111213510.1186/1471‑2105‑12‑3521269502
    [Google Scholar]
  30. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  31. ChinC.H. ChenS.H. WuH.H. HoC.W. KoM.T. LinC.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20148S4S1110.1186/1752‑0509‑8‑S4‑S1125521941
    [Google Scholar]
  32. SingT. SanderO. BeerenwinkelN. LengauerT. ROCR: Visualizing classifier performance in R.Bioinformatics200521203940394110.1093/bioinformatics/bti62316096348
    [Google Scholar]
  33. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  34. YooM. ShinJ. KimJ. RyallK.A. LeeK. LeeS. JeonM. KangJ. TanA.C. DSigDB: Drug signatures database for gene set analysis.Bioinformatics201531183069307110.1093/bioinformatics/btv31325990557
    [Google Scholar]
  35. LiY. XiaX. WangY. ZhengJ.C. Mitochondrial dysfunction in microglia: A novel perspective for pathogenesis of alzheimer’s disease.J. Neuroinflammation202219124810.1186/s12974‑022‑02613‑936203194
    [Google Scholar]
  36. RudlerD.L. HughesL.A. ViolaH.M. HoolL.C. RackhamO. FilipovskaA. Fidelity and coordination of mitochondrial protein synthesis in health and disease.J. Physiol.2021599143449346210.1113/JP28035932710561
    [Google Scholar]
  37. PriesnitzC. BeckerT. Pathways to balance mitochondrial translation and protein import.Genes Dev.20183219-201285129610.1101/gad.316547.11830275044
    [Google Scholar]
  38. LarssonN.G. WangJ. WilhelmssonH. OldforsA. RustinP. LewandoskiM. BarshG.S. ClaytonD.A. Mitochondrial transcription factor A is necessary for mtDNA maintance and embryogenesis in mice.Nat. Genet.199818323123610.1038/ng0398‑2319500544
    [Google Scholar]
  39. YamadaE.S. RespondekG. MüssnerS. de AndradeA. HöllerhageM. DepienneC. RastetterA. TarzeA. FriguetB. SalamaM. ChampyP. OertelW.H. HöglingerG.U. Annonacin, a natural lipophilic mitochondrial complex I inhibitor, increases phosphorylation of tau in the brain of FTDP-17 transgenic mice.Exp. Neurol.201425311312510.1016/j.expneurol.2013.12.01724389273
    [Google Scholar]
  40. SchirrmacherV. Mitochondria at work: New insights into regulation and dysregulation of cellular energy supply and metabolism.Biomedicines202081152610.3390/biomedicines811052633266387
    [Google Scholar]
  41. SangC. PhilbertS.A. HartlandD. UnwinR.D. DowseyA.W. XuJ. CooperG.J.S. Coenzyme A-dependent Tricarboxylic acid cycle enzymes are decreased in alzheimer’s disease consistent with Cerebral Pantothenate deficiency.Front. Aging Neurosci.20221489315910.3389/fnagi.2022.89315935754968
    [Google Scholar]
  42. BellS.M. BarnesK. De MarcoM. ShawP.J. FerraiuoloL. BlackburnD.J. VenneriA. MortiboysH. Mitochondrial dysfunction in alzheimer’s disease: A biomarker of the future?Biomedicines2021916310.3390/biomedicines901006333440662
    [Google Scholar]
  43. LiJ. ZhangY. LuT. LiangR. WuZ. LiuM. QinL. ChenH. YanX. DengS. ZhengJ. LiuQ. Identification of diagnostic genes for both alzheimer’s disease and metabolic syndrome by the machine learning algorithm.Front. Immunol.202213103731810.3389/fimmu.2022.103731836405716
    [Google Scholar]
  44. LaiY. LinP. LinF. ChenM. LinC. LinX. WuL. ZhengM. ChenJ. Identification of immune microenvironment subtypes and signature genes for alzheimer’s disease diagnosis and risk prediction based on explainable machine learning.Front. Immunol.202213104641010.3389/fimmu.2022.104641036569892
    [Google Scholar]
  45. DaviesS.M.K. Lopez SM.I.G. NarsaiR. ShearwoodA.M.J. RazifM.F.M. SmallI.D. WhelanJ. RackhamO. FilipovskaA. MRPS27 is a pentatricopeptide repeat domain protein required for the translation of mitochondrially encoded proteins.FEBS Lett.2012586203555356110.1016/j.febslet.2012.07.04322841715
    [Google Scholar]
  46. RenkemaG.H. WortmannS.B. SmeetsR.J. VenselaarH. AntoineM. VisserG. Ben-OmranT. van den HeuvelL.P. TimmersH.J.L.M. SmeitinkJ.A. RodenburgR.J.T. SDHA mutations causing a multisystem mitochondrial disease: Novel mutations and genetic overlap with hereditary tumors.Eur. J. Hum. Genet.201523220220910.1038/ejhg.2014.8024781757
    [Google Scholar]
  47. DröseS. Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning.Biochim. Biophys. Acta Bioenerg.20131827557858710.1016/j.bbabio.2013.01.00423333272
    [Google Scholar]
  48. Ramon De LucasJ. IndiveriC. TonazziA. PerezP. GiangregorioN. IacobazziV. PalmieriF. Functional characterization of residues within the carnitine/acylcarnitine translocase RX 2 PANAAXF distinct motif.Mol. Membr. Biol.200825215216310.1080/0968768070169747618307102
    [Google Scholar]
  49. RuiL. Energy metabolism in the liver.Compr. Physiol.20144117719710.1002/cphy.c13002424692138
    [Google Scholar]
  50. CastellanoC.A. NugentS. PaquetN. TremblayS. BoctiC. LacombeG. ImbeaultH. TurcotteÉ. FulopT. CunnaneS.C. Lower brain 18F-fluorodeoxyglucose uptake but normal 11C-acetoacetate metabolism in mild alzheimer’s disease dementia.J. Alzheimers Dis.20144341343135310.3233/JAD‑14107425147107
    [Google Scholar]
  51. PourshafieN. MasatiE. LopezA. BunkerE. SnyderA. EdwardsN.A. WinkelsasA.M. FischbeckK.H. GrunseichC. Altered SYNJ2BP-mediated mitochondrial-ER contacts in motor neuron disease.Neurobiol. Dis.202217210583210.1016/j.nbd.2022.10583235907632
    [Google Scholar]
  52. LealN.S. DentoniG. SchreinerB. NaiaL. PirasA. GraffC. CattaneoA. MeliG. HamasakiM. NilssonP. AnkarcronaM. Amyloid β-peptide increases mitochondria-endoplasmic reticulum contact altering mitochondrial function and autophagosome formation in alzheimer’s disease-related models.Cells2020912255210.3390/cells912255233260715
    [Google Scholar]
  53. WangW. ZhaoF. MaX. PerryG. ZhuX. Mitochondria dysfunction in the pathogenesis of alzheimer’s disease: Recent advances.Mol. Neurodegener.20201513010.1186/s13024‑020‑00376‑632471464
    [Google Scholar]
  54. SadatR. BarcaE. MasandR. DontiT.R. NainiA. De VivoD.C. DiMauroS. HanchardN.A. GrahamB.H. Functional cellular analyses reveal energy metabolism defect and mitochondrial DNA depletion in a case of mitochondrial aconitase deficiency.Mol. Genet. Metab.20161181283410.1016/j.ymgme.2016.03.00426992325
    [Google Scholar]
  55. GeY.D. HouS.L. JiangL.L. SuF.Z. WangP. Expression and characterization of a thermostable citrate synthase from Microcystis aeruginosa PCC7806.FEMS Microbiol. Lett.201936619fnz23610.1093/femsle/fnz23631755935
    [Google Scholar]
  56. HuangJ. SongZ. WeiB. LiQ. LinP. LiH. DongK. Immunological evaluation of patients with alzheimer’s disease based on mitogen-stimulated cytokine productions and mitochondrial DNA indicators.BMC Psychiatry202323114510.1186/s12888‑023‑04634‑x36890488
    [Google Scholar]
  57. OnyangoI.G. JaureguiG.V. ČarnáM. BennettJ.P.Jr StokinG.B. Neuroinflammation in alzheimer’s disease.Biomedicines20219552410.3390/biomedicines905052434067173
    [Google Scholar]
  58. ZhangB. GaiteriC. BodeaL.G. WangZ. McElweeJ. PodtelezhnikovA.A. ZhangC. XieT. TranL. DobrinR. FluderE. ClurmanB. MelquistS. NarayananM. SuverC. ShahH. MahajanM. GillisT. MysoreJ. MacDonaldM.E. LambJ.R. BennettD.A. MolonyC. StoneD.J. GudnasonV. MyersA.J. SchadtE.E. NeumannH. ZhuJ. EmilssonV. Integrated systems approach identifies genetic nodes and networks in late-onset alzheimer’s disease.Cell2013153370772010.1016/j.cell.2013.03.03023622250
    [Google Scholar]
  59. ZhangY. MiaoY. TanJ. ChenF. LeiP. ZhangQ. Identification of mitochondrial related signature associated with immune microenvironment in alzheimer’s disease.J. Transl. Med.202321145810.1186/s12967‑023‑04254‑937434203
    [Google Scholar]
  60. DemirS.A. TimurZ.K. AteşN. MartínezL.A. SeyrantepeV. GM2 ganglioside accumulation causes neuroinflammation and behavioral alterations in a mouse model of early onset Tay-Sachs disease.J. Neuroinflammation202017127710.1186/s12974‑020‑01947‑632951593
    [Google Scholar]
  61. ZenaroE. PietronigroE. BiancaV.D. PiacentinoG. MarongiuL. BuduiS. TuranoE. RossiB. AngiariS. DusiS. MontresorA. CarlucciT. NanìS. TosadoriG. CalcianoL. CatalucciD. BertonG. BonettiB. ConstantinG. Neutrophils promote alzheimer’s disease–like pathology and cognitive decline via LFA-1 integrin.Nat. Med.201521888088610.1038/nm.391326214837
    [Google Scholar]
  62. KolaczkowskaE. KubesP. Neutrophil recruitment and function in health and inflammation.Nat. Rev. Immunol.201313315917510.1038/nri339923435331
    [Google Scholar]
  63. PrinzM. PrillerJ. The role of peripheral immune cells in the CNS in steady state and disease.Nat. Neurosci.201720213614410.1038/nn.447528092660
    [Google Scholar]
  64. HaoJ. CampagnoloD. LiuR. PiaoW. ShiS. HuB. XiangR. ZhouQ. VollmerT. Van KaerL. La CavaA. ShiF.D. Interleukin‐2/interleukin‐2 antibody therapy induces target organ natural killer cells that inhibit central nervous system inflammation.Ann. Neurol.201169472173410.1002/ana.2233921425186
    [Google Scholar]
  65. LiuZ. LiH. PanS. Discovery and validation of key biomarkers based on immune infiltrates in alzheimer’s disease.Front. Genet.20211265832310.3389/fgene.2021.65832334276768
    [Google Scholar]
  66. ZhangY. FungI.T.H. SankarP. ChenX. RobisonL.S. YeL. D’SouzaS.S. SalineroA.E. KuentzelM.L. ChitturS.V. ZhangW. ZuloagaK.L. YangQ. Depletion of NK cells improves cognitive function in the alzheimer disease mouse model.J. Immunol.2020205250251010.4049/jimmunol.200003732503894
    [Google Scholar]
  67. YouX. TianJ. ZhangH. GuoY. YangJ. ZhuC. SongM. WangP. LiuZ. CancillaJ. LuW. GlorieuxC. WenS. DuH. HuangP. HuY. Loss of mitochondrial aconitase promotes colorectal cancer progression via SCD1-mediated lipid remodeling.Mol. Metab.20214810120310.1016/j.molmet.2021.10120333676027
    [Google Scholar]
  68. LyuC. MengY. ZhangX. YangJ. ShenB. Two enzymes contribute to citrate production in the mitochondrion of Toxoplasma gondii.J. Biol. Chem.2024300810756510.1016/j.jbc.2024.10756539002675
    [Google Scholar]
  69. PalmieriE.M. Gonzalez-CottoM. BaselerW.A. DaviesL.C. GhesquièreB. MaioN. RiceC.M. RouaultT.A. CasselT. HigashiR.M. LaneA.N. FanT.W.M. WinkD.A. McVicarD.W. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase.Nat. Commun.202011169810.1038/s41467‑020‑14433‑732019928
    [Google Scholar]
  70. JornayvazF.R. ShulmanG.I. Regulation of mitochondrial biogenesis.Essays Biochem.201047698410.1042/bse047006920533901
    [Google Scholar]
  71. YangZ.F. DrumeaK. MottS. WangJ. RosmarinA.G. GABP transcription factor (nuclear respiratory factor 2) is required for mitochondrial biogenesis.Mol. Cell. Biol.201434173194320110.1128/MCB.00492‑1224958105
    [Google Scholar]
  72. GalbraithL.C.A. MuiE. NixonC. HedleyA. StrachanD. MacKayG. SumptonD. SansomO.J. LeungH.Y. AhmadI. PPAR-gamma induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer.Oncogene202140132355236610.1038/s41388‑021‑01707‑733654198
    [Google Scholar]
  73. SchragM. MuellerC. ZabelM. CroftonA. KirschW.M. GhribiO. SquittiR. PerryG. Oxidative stress in blood in alzheimer’s disease and mild cognitive impairment: A meta-analysis.Neurobiol. Dis.20135910011010.1016/j.nbd.2013.07.00523867235
    [Google Scholar]
  74. LorenzoA. YanknerB.A. Amyloid fibril toxicity in alzheimer’s disease and diabetes.Ann. N. Y. Acad. Sci.19967771899510.1111/j.1749‑6632.1996.tb34406.x8624132
    [Google Scholar]
  75. HirakuraY. YiuW.W. YamamotoA. KaganB.L. Amyloid peptide channels: Blockade by zinc and inhibition by Congo red (amyloid channel block).Amyloid20007319419910.3109/1350612000914683411019860
    [Google Scholar]
  76. SchwarczR. BrunoJ.P. MuchowskiP.J. WuH.Q. Kynurenines in the mammalian brain: When physiology meets pathology.Nat. Rev. Neurosci.201213746547710.1038/nrn325722678511
    [Google Scholar]
  77. KozakR. CampbellB.M. StrickC.A. HornerW. HoffmannW.E. KissT. ChapinD.S. McGinnisD. AbbottA.L. RobertsB.M. FonsecaK. GuanowskyV. YoungD.A. SeymourP.A. DounayA. HajosM. WilliamsG.V. CastnerS.A. Reduction of brain kynurenic acid improves cognitive function.J. Neurosci.20143432105921060210.1523/JNEUROSCI.1107‑14.201425100593
    [Google Scholar]
  78. CostaB. ValeN. Understanding Lamotrigine’s role in the CNS and possible future evolution.Int. J. Mol. Sci.2023247605010.3390/ijms2407605037047022
    [Google Scholar]
  79. WangK. Fernandez-EscobarA. HanS. ZhuP. WangJ.H. SunY. Lamotrigine reduces inflammatory response and ameliorates executive function deterioration in an alzheimer’s-like mouse model.BioMed Res. Int.201620161910.1155/2016/781019628042572
    [Google Scholar]
  80. SogawaR. MochinagaS. InabaT. MatsushimaJ. MizoguchiY. KawashimaT. FujitoH. MonjiA. Safety of long-term use of lamotrigine for the treatment of psychiatric disorders.Clin. Neuropharmacol.201639629529810.1097/WNF.000000000000017427438184
    [Google Scholar]
  81. LiuJ.L. FanY.G. YangZ.S. WangZ.Y. GuoC. Iron and alzheimer’s disease: From pathogenesis to therapeutic implications.Front. Neurosci.20181263210.3389/fnins.2018.0063230250423
    [Google Scholar]
  82. VolaniC. DoerrierC. DemetzE. HaschkaD. PagliaG. LavdasA.A. GnaigerE. WeissG. Dietary iron loading negatively affects liver mitochondrial function.Metallomics20179111634164410.1039/C7MT00177K29026901
    [Google Scholar]
  83. HallE.C.II LeeS.Y. MairuaeN. SimmonsZ. ConnorJ.R. Expression of the HFE allelic variant H63D in SH-SY5Y cells affects tau phosphorylation at serine residues.Neurobiol. Aging20113281409141910.1016/j.neurobiolaging.2009.08.01219775775
    [Google Scholar]
/content/journals/car/10.2174/0115672050353736241218054012
Loading
/content/journals/car/10.2174/0115672050353736241218054012
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test