Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background

Due to the heterogeneity of Alzheimer's disease (AD), the underlying pathogenic mechanisms have not been fully elucidated. Oligodendrocyte (OL) damage and myelin degeneration are prevalent features of AD pathology. When oligodendrocytes are subjected to amyloid-beta (Aβ) toxicity, this damage compromises the structural integrity of myelin and results in a reduction of myelin-associated proteins. Consequently, the impairment of myelin integrity leads to a slowdown or cessation of nerve signal transmission, ultimately contributing to cognitive dysfunction and the progression of AD. Consequently, elucidating the relationship between oligodendrocytes and AD from the perspective of oligodendrocytes is instrumental in advancing our understanding of the pathogenesis of AD.

Objective

Here, an attempt is made in this study to identify oligodendrocyte-related biomarkers of AD.

Methods

AD datasets were obtained from the Gene Expression Omnibus database and used for consensus clustering to identify subclasses. Hub genes were identified through differentially expressed genes (DEGs) analysis and oligodendrocyte gene set enrichment. Immune infiltration analysis was conducted using the CIBERSORT method. Signature genes were identified using machine learning algorithms and logistic regression. A diagnostic nomogram for predicting AD was developed and validated using external datasets and an AD model. A small molecular compound was identified using the eXtreme Sum algorithm.

Results

46 genes were found to be significantly correlated with AD progression by examining the overlap between DEGs and oligodendrocyte genes. Two subclasses of AD, Cluster A, and Cluster B, were identified, and 9 signature genes were identified using a machine learning algorithm to construct a nomogram. Enrichment analysis showed that 9 genes are involved in apoptosis and neuronal development. Immune infiltration analysis found differences in immune cell presence between AD patients and controls. External datasets and RT-qPCR verification showed variation in signature genes between AD patients and controls. Five small molecular compounds were predicted.

Conclusion

It was found that 9 oligodendrocyte genes can be used to create a diagnostic tool for AD, which could help in developing new treatments.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050338777241028071955
2024-11-06
2025-07-08
Loading full text...

Full text loading...

References

  1. CuevasP.E.G. DavidsonP.M. MejillaJ.L. RodneyT.W. Reminiscence therapy for older adults with Alzheimer’s disease: A literature review.Int. J. Ment. Health Nurs.202029336437110.1111/inm.1269231984570
    [Google Scholar]
  2. MastersC.L. BeyreutherK. Science, medicine, and the future: Alzheimer’s disease.BMJ1998316712944644810.1136/bmj.316.7129.4469492674
    [Google Scholar]
  3. SongT. ChenY. LiC. YaoY. MaS. ShangY. ChengJ. Identification of molecular correlations of GSDMD with Pyroptosis in Alzheimer’s disease.Comb. Chem. High Throughput Screen.202427142125213910.2174/011386207328549724022606193639099451
    [Google Scholar]
  4. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  5. Esquerda-CanalsG. Montoliu-GayaL. Güell-BoschJ. VillegasS. Mouse models of Alzheimer’s disease.J. Alzheimers Dis.20175741171118310.3233/JAD‑17004528304309
    [Google Scholar]
  6. YaoY. LiuQ. DingS. ChenY. SongT. ShangY. Scutellaria baicalensis Georgi stems and leaves flavonoids promote neuroregeneration and ameliorate memory loss in rats through cAMP-PKA-CREB signaling pathway based on network pharmacology and bioinformatics analysis.Heliyon2024106e2716110.1016/j.heliyon.2024.e2716138533079
    [Google Scholar]
  7. ZhangH. LiuQ. DingS. LiH. ShangY.Z. Flavonoids from stems and leaves of Scutellaria Baicalensis Georgi improve composited aβ-induced Alzheimer’s disease model rats’ memory and neuroplasticity disorders.Comb. Chem. High Throughput Screen.20232681519153210.2174/138620732566622100309262736200197
    [Google Scholar]
  8. ZhangX. WangR. HuD. SunX. FujiokaH. LundbergK. ChanE.R. WangQ. XuR. FlanaganM.E. PieperA.A. QiX. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer’s disease.Sci. Adv.2020649eabb868010.1126/sciadv.abb868033277246
    [Google Scholar]
  9. ZouP. WuC. LiuT.C.Y. DuanR. YangL. Oligodendrocyte progenitor cells in Alzheimer’s disease: from physiology to pathology.Transl. Neurodegener.20231215210.1186/s40035‑023‑00385‑737964328
    [Google Scholar]
  10. SadickJ S O'deaM R HaselP DykstraT FaustinA LiddelowS A Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in alzheimer's disease .Neuron2022110111788180510.1016/j.neuron.2022.03.008
    [Google Scholar]
  11. OssenkoppeleR. van der KantR. HanssonO. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials.Lancet Neurol.202221872673410.1016/S1474‑4422(22)00168‑535643092
    [Google Scholar]
  12. DeFlitchL. Gonzalez-FernandezE. CrawleyI. KangS.H. Age and Alzheimer’s disease-related Oligodendrocyte changes in Hippocampal Subregions.Front. Cell. Neurosci.20221684709710.3389/fncel.2022.84709735465615
    [Google Scholar]
  13. ZhangP. KishimotoY. GrammatikakisI. GottimukkalaK. CutlerR.G. ZhangS. AbdelmohsenK. BohrV.A. Misra SenJ. GorospeM. MattsonM.P. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model.Nat. Neurosci.201922571972810.1038/s41593‑019‑0372‑930936558
    [Google Scholar]
  14. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.1343928872215
    [Google Scholar]
  15. MaesO.C. SchipperH.M. ChertkowH.M. WangE. Methodology for discovery of Alzheimer’s disease blood-based biomarkers.J. Gerontol.: Series A200964A663664510.1093/gerona/glp04519366883
    [Google Scholar]
  16. NaughtonB.J. DuncanF.J. MurreyD.A. MeadowsA.S. NewsomD.E. StoiceaN. WhiteP. ScharreD.W. MccartyD.M. FuH. Blood genome-wide transcriptional profiles reflect broad molecular impairments and strong blood-brain links in Alzheimer’s disease.J. Alzheimers Dis.20144319310810.3233/JAD‑14060625079797
    [Google Scholar]
  17. NiculescuA.B. Le-NiculescuH. RoseberryK. WangS. HartJ. KaurA. RobertsonH. JonesT. StrasburgerA. WilliamsA. KurianS.M. LambB. ShekharA. LahiriD.K. SaykinA.J. Blood biomarkers for memory: Toward early detection of risk for Alzheimer disease, pharmacogenomics, and repurposed drugs.Mol. Psych20202581651167210.1038/s41380‑019‑0602‑231792364
    [Google Scholar]
  18. XuM. ZhouH. HuP. PanY. WangS. LiuL. LiuX. Identification and validation of immune and oxidative stress-related diagnostic markers for diabetic nephropathy by WGCNA and machine learning.Front. Immunol.202314108453110.3389/fimmu.2023.108453136911691
    [Google Scholar]
  19. YeL. LiangR. LiuX. LiJ. YueJ. ZhangX. Frailty and sarcopenia: A bibliometric analysis of their association and potential targets for intervention.Ageing Res. Rev.20239210211110.1016/j.arr.2023.10211138031836
    [Google Scholar]
  20. LianP. CaiX. WangC. LiuK. YangX. WuY. ZhangZ. MaZ. CaoX. XuY. Identification of metabolism-related subtypes and feature genes in Alzheimer’s disease.J. Transl. Med.202321162810.1186/s12967‑023‑04324‑y37715200
    [Google Scholar]
  21. YaoY. ZhaoJ. ZhouX. HuJ. WangY. Potential role of a three-gene signature in predicting diagnosis in patients with myocardial infarction.Bioengineered20211212734274910.1080/21655979.2021.193849834130601
    [Google Scholar]
  22. LiT. LiW. GuoX. TanT. XiangC. OuyangZ. Unraveling the potential mechanisms of the anti-osteoporotic effects of the Achyranthes bidentata–Dipsacus asper herb pair: A network pharmacology and experimental study.Front. Pharmacol.202314124219410.3389/fphar.2023.124219437849727
    [Google Scholar]
  23. LiuP. LiuZ. LuoQ. FuQ. ZhangX. YuP. ZhouS. WangY. ZhangJ. ChenS. ZhangH. ZhuQ. QinT. A pan-cancer analysis of potassium channel tetramerization domain containing 12 in human cancer.Sci. Rep.20231311389810.1038/s41598‑023‑41091‑837626178
    [Google Scholar]
  24. QiB. LiY. PengZ. LuoZ. ZhangX. ChenJ. LiG. SunY. Macrophage-Myofibroblast transition as a potential origin for skeletal muscle fibrosis after injury via complement system activation.J. Inflamm. Res.2024171083109410.2147/JIR.S45059938384372
    [Google Scholar]
  25. YaoY ZhaoJ HuJ SongH WangS YingW Identification of potential biomarkers and immune infiltration in pediatric sepsis via multiple-microarray analysis.Eur J Inflamm.20222010.1177/1721727X221144392
    [Google Scholar]
  26. CreanzaT.M. DelreP. AnconaN. LentiniG. SavianoM. MangiatordiG.F. Structure-based prediction of hERG-related cardiotoxicity: A benchmark study.J. Chem. Inf. Model.20216194758477010.1021/acs.jcim.1c0074434506150
    [Google Scholar]
  27. ChoiW. OhJ.H. RiyahiS. LiuC.J. JiangF. ChenW. WhiteC. RimnerA. MechalakosJ.G. DeasyJ.O. LuW. Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer.Med. Phys.20184541537154910.1002/mp.1282029457229
    [Google Scholar]
  28. ZhangQ. LiJ. WengL. Identification and validation of aging-related genes in Alzheimer’s disease.Front. Neurosci.20221690572210.3389/fnins.2022.90572235615282
    [Google Scholar]
  29. ZhangP. WuX. WangD. ZhangM. ZhangB. ZhangZ. Unraveling the role of low-density lipoprotein-related genes in lung adenocarcinoma: Insights into tumor microenvironment and clinical prognosis.Environ. Toxicol.202439104479449510.1002/tox.2423038488684
    [Google Scholar]
  30. WangH. LiH. RongY. HeH. WangY. CuiY. QiL. XiaoC. XuH. HanW. Bioinformatics identification and validation of maternal blood biomarkers and immune cell infiltration in preeclampsia: An observational study.Medicine (Baltimore)202410321e3826010.1097/MD.000000000003826038788026
    [Google Scholar]
  31. ChenH.L. LiuY.H. TanC.H. Age-related genes affecting the immune cell infiltration in ulcerative colitis revealed by weighted correlation network analysis and machine learning.Eur. Rev. Med. Pharmacol. Sci.202327188447846210.26355/eurrev_202309_3376837782162
    [Google Scholar]
  32. ZhangM. LiQ. ZhangW. YangY. GuJ. DongQ. Identification and validation of genes associated with copper death in oral squamous cell carcinoma based on machine learning and weighted gene co-expression network analysis.J. Stomatol. Oral Maxillofac. Surg.2023124610156110.1016/j.jormas.2023.10156137451513
    [Google Scholar]
  33. InokuchiR. IwagamiM. SunY. SakamotoA. TamiyaN. Machine learning models predicting undertriage in telephone triage.Ann. Med.20225412989299610.1080/07853890.2022.213640236286496
    [Google Scholar]
  34. WangW. TianS.L. JinD. LiuB. WangW. ChangH. ChenC. YuZ. WangY.Z. LiY.L. The role of bile acid subtypes in the diagnosis of cholangiocarcinoma.Asia Pac. J. Clin. Oncol.2022182e163e17210.1111/ajco.1358834161672
    [Google Scholar]
  35. FengY. MiaoF. LiY. LiM. CaoY. Validating the 2023 FIGO staging system: A nomogram for endometrioid endometrial cancer and adenocarcinoma.Cancer Med.20241310e721610.1002/cam4.721638752451
    [Google Scholar]
  36. TangY. DingC. XuQ. ZhouW. QinY. LuM. LvH. Prediction nomogram for coronary artery aneurysms at one month in Kawasaki disease.Ital. J. Pediatr.202349114610.1186/s13052‑023‑01551‑337932799
    [Google Scholar]
  37. ZhangL. CuiY. MeiJ. ZhangZ. ZhangP. Exploring cellular diversity in lung adenocarcinoma epithelium: Advancing prognostic methods and immunotherapeutic strategies.Cell Prolif.2024e1370310.1111/cpr.1370338946232
    [Google Scholar]
  38. YouW. OuyangJ. CaiZ. ChenY. WuX. Comprehensive analyses of immune subtypes of stomach Adenocarcinoma for mRNA vaccination.Front. Immunol.20221382750610.3389/fimmu.2022.82750635874675
    [Google Scholar]
  39. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  40. BlalockE.M. GeddesJ.W. ChenK.C. PorterN.M. MarkesberyW.R. LandfieldP.W. Incipient Alzheimer’s disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses.Proc. Natl. Acad. Sci. USA200410172173217810.1073/pnas.030851210014769913
    [Google Scholar]
  41. LiangW.S. DunckleyT. BeachT.G. GroverA. MastroeniD. WalkerD.G. CaselliR.J. KukullW.A. McKeelD. MorrisJ.C. HuletteC. SchmechelD. AlexanderG.E. ReimanE.M. RogersJ. StephanD.A. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain.Physiol. Genom200728331132210.1152/physiolgenomics.00208.200617077275
    [Google Scholar]
  42. LiangW.S. ReimanE.M. VallaJ. DunckleyT. BeachT.G. GroverA. NiedzielkoT.L. SchneiderL.E. MastroeniD. CaselliR. KukullW. MorrisJ.C. HuletteC.M. SchmechelD. RogersJ. StephanD.A. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons.Proc. Natl. Acad. Sci. USA2008105114441444610.1073/pnas.070925910518332434
    [Google Scholar]
  43. ReadheadB. Haure-MirandeJ.V. FunkC.C. RichardsM.A. ShannonP. HaroutunianV. SanoM. LiangW.S. BeckmannN.D. PriceN.D. ReimanE.M. SchadtE.E. EhrlichM.E. GandyS. DudleyJ.T. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human Herpesvirus.Neuron20189916482.e710.1016/j.neuron.2018.05.02329937276
    [Google Scholar]
  44. LiangW.S. DunckleyT. BeachT.G. GroverA. MastroeniD. RamseyK. CaselliR.J. KukullW.A. McKeelD. MorrisJ.C. HuletteC.M. SchmechelD. ReimanE.M. RogersJ. StephanD.A. Altered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: A reference data set.Physiol. Genom200833224025610.1152/physiolgenomics.00242.200718270320
    [Google Scholar]
  45. WebsterJ.A. GibbsJ.R. ClarkeJ. RayM. ZhangW. HolmansP. RohrerK. ZhaoA. MarloweL. KaleemM. McCorquodaleD.S.III CuelloC. LeungD. BrydenL. NathP. ZismannV.L. JoshipuraK. HuentelmanM.J. Hu-LinceD. CoonK.D. CraigD.W. PearsonJ.V. HewardC.B. ReimanE.M. StephanD. HardyJ. MyersA.J. Genetic control of human brain transcript expression in alzheimer disease.Am. J. Hum. Genet.200984444545810.1016/j.ajhg.2009.03.01119361613
    [Google Scholar]
  46. BlalockE.M. BuechelH.M. PopovicJ. GeddesJ.W. LandfieldP.W. Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer’s disease.J. Chem. Neuroanat.201142211812610.1016/j.jchemneu.2011.06.00721756998
    [Google Scholar]
  47. MillerJ.A. WoltjerR.L. GoodenbourJ.M. HorvathS. GeschwindD.H. Genes and pathways underlying regional and cell type changes in Alzheimer’s disease.Genome Med.2013554810.1186/gm45223705665
    [Google Scholar]
  48. YaoZ. DongH. ZhuJ. DuL. LuoY. LiuQ. LiuS. LinY. WangL. WangS. WeiW. ZhangK. HuangQ. YuX. ZhaoW. XuH. QiuX. PanY. HuangX. Jim YeungS.C. ZhangD. ZhangH. Age-related decline in hippocampal tyrosine phosphatase PTPRO is a mechanistic factor in chemotherapy-related cognitive impairment.JCI Insight2023814e16630610.1172/jci.insight.16630637485875
    [Google Scholar]
  49. HokamaM. OkaS. LeonJ. NinomiyaT. HondaH. SasakiK. IwakiT. OharaT. SasakiT. LaFerlaF.M. KiyoharaY. NakabeppuY. Altered expression of diabetes-related genes in Alzheimer’s disease brains: The Hisayama study.Cereb. Cortex20142492476248810.1093/cercor/bht10123595620
    [Google Scholar]
  50. BerchtoldN.C. CribbsD.H. ColemanP.D. RogersJ. HeadE. KimR. BeachT. MillerC. TroncosoJ. TrojanowskiJ.Q. ZielkeH.R. CotmanC.W. Gene expression changes in the course of normal brain aging are sexually dimorphic.Proc. Natl. Acad. Sci. USA200810540156051561010.1073/pnas.080688310518832152
    [Google Scholar]
  51. BerchtoldN.C. ColemanP.D. CribbsD.H. RogersJ. GillenD.L. CotmanC.W. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease.Neurobiol. Aging20133461653166110.1016/j.neurobiolaging.2012.11.02423273601
    [Google Scholar]
  52. CribbsD.H. BerchtoldN.C. PerreauV. ColemanP.D. RogersJ. TennerA.J. CotmanC.W. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: A microarray study.J. Neuroinflammation20129164310.1186/1742‑2094‑9‑17922824372
    [Google Scholar]
  53. AstaritaG. JungK.M. BerchtoldN.C. NguyenV.Q. GillenD.L. HeadE. CotmanC.W. PiomelliD. Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer’s disease.PLoS One201059e1253810.1371/journal.pone.001253820838618
    [Google Scholar]
  54. BlairL.J. NordhuesB.A. HillS.E. ScaglioneK.M. O’LearyJ.C.III FontaineS.N. BreydoL. ZhangB. LiP. WangL. CotmanC. PaulsonH.L. MuscholM. UverskyV.N. KlengelT. BinderE.B. KayedR. GoldeT.E. BerchtoldN. DickeyC.A. Accelerated neurodegeneration through chaperone-mediated oligomerization of tau.J. Clin. Invest.2013123104158416910.1172/JCI6900323999428
    [Google Scholar]
  55. SárváriM. HrabovszkyE. KallóI. SolymosiN. LikóI. BerchtoldN. CotmanC. LipositsZ. Menopause leads to elevated expression of macrophage-associated genes in the aging frontal cortex: Rat and human studies identify strikingly similar changes.J. Neuroinflammation20129177310.1186/1742‑2094‑9‑26423206327
    [Google Scholar]
  56. NitscheA. ArnoldC. UeberhamU. ReicheK. FallmannJ. HackermüllerJ. HornF. StadlerP.F. ArendtT. Alzheimer-related genes show accelerated evolution.Mol. Psych.202126105790579610.1038/s41380‑020‑0680‑132203153
    [Google Scholar]
  57. XuP. WuZ. PengY. GaoJ. ZhengF. TanJ. XuJ. WangT. Neuroprotection of triptolide against amyloid-beta1-42-induced toxicity via the Akt/mTOR/p70S6K-mediated autophagy pathwayAn. Acad. Bras. Cienc.2022942e20210938
    [Google Scholar]
  58. RochaD.J.P. SantosC.S. PachecoL.G.C. Bacterial reference genes for gene expression studies by RT-qPCR: Survey and analysis.Antonie van Leeuwenhoek2015108368569310.1007/s10482‑015‑0524‑126149127
    [Google Scholar]
  59. HajeriS. VidalakisG. YokomiR.K. Detection of viroids using RT-qPCR.Methods Mol. Biol.2022231615316210.1007/978‑1‑0716‑1464‑8_1434845693
    [Google Scholar]
  60. BloomG.S. Amyloid-β and Tau.JAMA Neurol.201471450550810.1001/jamaneurol.2013.584724493463
    [Google Scholar]
  61. ZhangH. WeiW. ZhaoM. MaL. JiangX. PeiH. CaoY. LiH. Interaction between Aβ and Tau in the pathogenesis of Alzheimer’s disease.Int. J. Biol. Sci.20211792181219210.7150/ijbs.5707834239348
    [Google Scholar]
  62. GuoT. ZhangD. ZengY. HuangT.Y. XuH. ZhaoY. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease.Mol. Neurodegener.20201514010.1186/s13024‑020‑00391‑732677986
    [Google Scholar]
  63. DuaraR. BarkerW. Heterogeneity in Alzheimer’s disease diagnosis and progression rates: Implications for therapeutic trials.Neurotherapeutics202219182510.1007/s13311‑022‑01185‑z35084721
    [Google Scholar]
  64. CanoA. TurowskiP. EttchetoM. DuskeyJ.T. TosiG. Sánchez-LópezE. GarcíaM.L. CaminsA. SoutoE.B. RuizA. MarquiéM. BoadaM. Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer’s disease: From current to future challenges.J. Nanobiotechnology202119112210.1186/s12951‑021‑00864‑x33926475
    [Google Scholar]
  65. MuralidarS. AmbiS.V. SekaranS. ThirumalaiD. PalaniappanB. Role of tau protein in Alzheimer’s disease: The prime pathological player.Int. J. Biol. Macromol.20201631599161710.1016/j.ijbiomac.2020.07.32732784025
    [Google Scholar]
  66. SunX. LiL. DongQ.X. ZhuJ. HuangY. HouS. YuX. LiuR. Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease.J. Neuroinflammation202118113110.1186/s12974‑021‑02182‑334116706
    [Google Scholar]
  67. van der KantR. GoldsteinL.S.B. OssenkoppeleR. Amyloid-β-independent regulators of tau pathology in alzheimer disease.Nat. Rev. Neurosci.2020211213510.1038/s41583‑019‑0240‑331780819
    [Google Scholar]
  68. NasrabadyS.E. RizviB. GoldmanJ.E. BrickmanA.M. White matter changes in Alzheimer’s disease: A focus on myelin and oligodendrocytes.Acta Neuropathol. Commun.2018612210.1186/s40478‑018‑0515‑329499767
    [Google Scholar]
  69. DeppC. SunT. SasmitaA.O. SpiethL. BerghoffS.A. NazarenkoT. OverhoffK. Steixner-KumarA.A. SubramanianS. ArinradS. RuhwedelT. MöbiusW. GöbbelsS. SaherG. WernerH.B. DamkouA. ZamparS. WirthsO. ThalmannM. SimonsM. SaitoT. SaidoT. Krueger-BurgD. KawaguchiR. WillemM. HaassC. GeschwindD. EhrenreichH. StassartR. NaveK.A. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease.Nature2023618796434935710.1038/s41586‑023‑06120‑637258678
    [Google Scholar]
  70. KempurajD ThangavelR NatteruP A SelvakumarG P SaeedD ZahoorH ZaheerS IyerS S ZaheerA. Neuroinflammation induces neurodegeneration.J. Neurol. Neurosurg. Spine201611
    [Google Scholar]
  71. ShenL. YangA. ChenX. XiaoS. LiuX. LinJ. ZhaoY. ZhangK. LiC. KeJ. ZhangH. KhanN.U. Proteomic profiling of cerebrum mitochondria, myelin sheath, and synaptosome revealed mitochondrial damage and synaptic impairments in association with 3 × Tg-AD mice model.Cell. Mol. Neurobiol.20224261745176310.1007/s10571‑021‑01052‑z33560469
    [Google Scholar]
  72. LaiY. LinP. LinF. ChenM. LinC. LinX. WuL. ZhengM. ChenJ. Identification of immune microenvironment subtypes and signature genes for Alzheimer’s disease diagnosis and risk prediction based on explainable machine learning.Front. Immunol.202213104641010.3389/fimmu.2022.104641036569892
    [Google Scholar]
  73. LiJ. ZhangY. LuT. LiangR. WuZ. LiuM. QinL. ChenH. YanX. DengS. ZhengJ. LiuQ. Identification of diagnostic genes for both Alzheimer’s disease and metabolic syndrome by the machine learning algorithm.Front. Immunol.202213103731810.3389/fimmu.2022.103731836405716
    [Google Scholar]
  74. YamadaD. KawabeK. TosaI. TsukamotoS. NakazatoR. KouM. FujikawaK. NakamuraS. OnoM. OohashiT. KanekoM. GoS. HinoiE. YonedaY. TakaradaT. Inhibition of the glutamine transporter SNAT1 confers neuroprotection in mice by modulating the mTOR-autophagy system.Commun. Biol.20192134610.1038/s42003‑019‑0582‑431552299
    [Google Scholar]
  75. TanJ. XuY. HanF. YeX. Genetical modification on adipose-derived stem cells facilitates facial nerve regeneration.Aging (Albany NY)201911390892010.18632/aging.10179030728320
    [Google Scholar]
  76. ChongM.S. GohL.K. LimW.S. ChanM. TayL. ChenG. FengL. NgT.P. TanC.H. LeeT.S. Gene expression profiling of peripheral blood leukocytes shows consistent longitudinal downregulation of TOMM40 and upregulation of KIR2DL5A, PLOD1, and SLC2A8 among fast progressors in early Alzheimer’s disease.J. Alzheimers Dis.201334239940510.3233/JAD‑12162123234877
    [Google Scholar]
  77. LagisettyY. BourquardT. Al-RamahiI. MangleburgC.G. MotaS. SoleimaniS. ShulmanJ.M. BotasJ. LeeK. LichtargeO. Identification of risk genes for Alzheimer’s disease by gene embedding.Cell Genom.20222910016210.1016/j.xgen.2022.10016236268052
    [Google Scholar]
  78. KimS.H. NohM.Y. KimH.J. OhK.W. ParkJ. LeeS. MoonY. KimY.E. BaeJ.S. JinH.K. K-ARPI A therapeutic strategy for Alzheimer’s disease focused on immune-inflammatory modulation.Dement. Neurocog. Disord.2019182334610.12779/dnd.2019.18.2.3331297134
    [Google Scholar]
  79. WangL. SatoH. ZhaoS. TooyamaI. Deposition of lactoferrin in fibrillar-type senile plaques in the brains of transgenic mouse models of Alzheimer’s disease.Neurosci. Lett.2010481316416710.1016/j.neulet.2010.06.07920599473
    [Google Scholar]
/content/journals/car/10.2174/0115672050338777241028071955
Loading
/content/journals/car/10.2174/0115672050338777241028071955
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test