Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Alzheimer's disease (AD) is a complex neurological disorder that progressively worsens. Although its exact causes are not fully understood, new research indicates that genes related to non-neuronal cells change significantly with age, playing key roles in AD's pathology.

Methods

This study focuses on a protein network centered on Glial Fibrillary Acidic Protein (GFAP) and Protein Tyrosine Phosphatase Receptor Type C (PTPRC).

The Key Findings of this Study Include

1. A significant correlation was observed between GFAP and PTPRC expression throughout AD progression, which links closely with clinical phenotypes and suggests their role in AD pathology. 2. A molecular network centered on GFAP and PTPRC, including Catenin Beta 1 (CTNNB1) and Integrin Beta 2 (ITGB2), showed distinct changes in interactions, highlighting its regulatory role in AD. 3. Analysis of GSE5281 data revealed a decline in the interaction strength within this network, pointing to potential desynchronization as a biomarker for AD. 4. SVM diagnostic models comparing expression and coupling values confirmed this desynchronization, suggesting it worsens with AD progression.

Results

Based on these findings, it is hypothesized that as AD progresses, the - and -centered molecular framework undergoes significant changes affecting key biological pathways. These changes disrupt immune regulation and cellular functions, increasing immune cell activation and inflammation in the brain. This may impair neuronal communication and synaptic functionality, exacerbating AD's pathology.

Conclusion

To verify these findings, Support Vector Machine (SVM) diagnostic models and correlation analyses were used to examine changes in this network, indicating that its dysregulation significantly affects AD progression.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050333760241010061547
2024-10-30
2025-05-29
Loading full text...

Full text loading...

References

  1. HammV. HéraudC. CasselJ.C. MathisC. GoutagnyR. Precocious alterations of brain oscillatory activity in Alzheimer’s disease: A window of opportunity for early diagnosis and treatment.Front. Cell. Neurosci.2015949110.3389/fncel.2015.00491 26733816
    [Google Scholar]
  2. Román-CaballeroR. MioniG. Time-based and event-based prospective memory in mild cognitive impairment and Alzheimer’s disease patients: A systematic review and meta-analysis.Neuropsychol. Rev.202312410.1007/s11065‑023‑09626‑y 37962750
    [Google Scholar]
  3. BlagovA.V. GrechkoA.V. NikiforovN.G. BorisovE.E. SadykhovN.K. OrekhovA.N. Role of impaired mitochondrial dynamics processes in the pathogenesis of Alzheimer’s disease.Int. J. Mol. Sci.20222313695410.3390/ijms23136954 35805958
    [Google Scholar]
  4. OlajideO.J. SuvantoM.E. ChapmanC.A. Molecular mechanisms of neurodegeneration in the entorhinal cortex that underlie its selective vulnerability during the pathogenesis of Alzheimer’s disease.Biol. Open2021101bio05679610.1242/bio.056796 33495355
    [Google Scholar]
  5. YangL. PangX. GuoW. An exploration of the coherent effects between mettl3 and ndufa10 on Alzheimer’s disease.Int. J. Mol. Sci.202324121011110.3390/ijms241210111 37373264
    [Google Scholar]
  6. PereiraJ.B. Plasma glial fibrillary acidic protein is an early marker of amyloid pathology in Alzheimer’s disease.medRxiv2021202124
    [Google Scholar]
  7. De BastianiM.A. BellaverB. BrumW.S. Hippocampal GFAP-positive astrocyte responses to amyloid and tau pathologies.Brain Behav. Immun.202311017518410.1016/j.bbi.2023.03.001 36878332
    [Google Scholar]
  8. BenussiA. AshtonN.J. KarikariT.K. Serum glial fibrillary acidic protein (gfap) is a marker of disease severity in frontotemporal lobar degeneration.J. Alzheimers Dis.20207731129114110.3233/JAD‑200608 32804092
    [Google Scholar]
  9. Al BarashdiM.A. AliA. McMullinM.F. MillsK. Protein tyrosine phosphatase receptor type C (PTPRC or CD45).J. Clin. Pathol.202174954855210.1136/jclinpath‑2020‑206927 34039664
    [Google Scholar]
  10. Ruiz de Martín EstebanS. Benito-CuestaI. TerradillosI. Cannabinoid CB2 receptors modulate microglia function and amyloid dynamics in a mouse model of Alzheimer’s disease.Front. Pharmacol.20221384176610.3389/fphar.2022.841766 35645832
    [Google Scholar]
  11. LeónB.E. KangS. Franca-SolomonG. ShangP. ChoiD.S. Alcohol-induced neuroinflammatory response and mitochondrial dysfunction on aging and Alzheimer’s disease.Front. Behav. Neurosci.20221577845610.3389/fnbeh.2021.778456 35221939
    [Google Scholar]
  12. XieF. DongH. ZhangH. Regulatory functions of protein tyrosine phosphatase receptor type o in immune cells.Front. Immunol.20211278337010.3389/fimmu.2021.783370 34880876
    [Google Scholar]
  13. AiliM. ZhouK. ZhanJ. ZhengH. LuoF. Anti-inflammatory role of gold nanoparticles in the prevention and treatment of Alzheimer’s disease.J. Mater. Chem. B Mater. Biol. Med.202311368605862110.1039/D3TB01023F 37615596
    [Google Scholar]
  14. BajT. SethR. Role of curcumin in regulation of tnf-α mediated brain inflammatory responses.Recent Pat. Inflamm. Allergy Drug Discov.2018121697710.2174/1872213X12666180703163824 29972106
    [Google Scholar]
  15. StreitW.J. MrakR.E. GriffinW.S.T. Microglia and neuroinflammation: A pathological perspective.J. Neuroinflammation2004111410.1186/1742‑2094‑1‑14 15285801
    [Google Scholar]
  16. StuartM.J. SinghalG. BauneB.T. Systematic review of the neurobiological relevance of chemokines to psychiatric disorders.Front. Cell. Neurosci.2015935710.3389/fncel.2015.00357 26441528
    [Google Scholar]
  17. BritesD. FernandesA. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microrna dysregulation.Front. Cell. Neurosci.2015947610.3389/fncel.2015.00476 26733805
    [Google Scholar]
  18. WangA. ChenM. WangH. Cell adhesion-related molecules play a key role in renal cancer progression by multinetwork analysis.BioMed Res. Int.2019201911010.1155/2019/2325765 31950034
    [Google Scholar]
  19. ZuL. HeJ. ZhouN. The profile and clinical significance of itgb2 expression in non-small-cell lung cancer.J. Clin. Med.20221121642110.3390/jcm11216421 36362654
    [Google Scholar]
  20. BaumM.L. KurupP. XuJ. LombrosoP.J. A STEP forward in neural function and degeneration.Commun. Integr. Biol.20103541942210.4161/cib.3.5.12692 21057629
    [Google Scholar]
  21. GrantS.G. KarlK.A. KieblerM.A. KandelE.R. Focal adhesion kinase in the brain: Novel subcellular localization and specific regulation by Fyn tyrosine kinase in mutant mice.Genes Dev.19959151909192110.1101/gad.9.15.1909 7544314
    [Google Scholar]
  22. AllenW.E. BlosserT.R. SullivanZ.A. DulacC. ZhuangX. Molecular and spatial signatures of mouse brain aging at single-cell resolution.Cell20231861194208.e1810.1016/j.cell.2022.12.010 36580914
    [Google Scholar]
  23. ZhuY. HouH. Rezai-ZadehK. CD45 deficiency drives amyloid-β peptide oligomers and neuronal loss in Alzheimer’s disease mice.J. Neurosci.20113141355136510.1523/JNEUROSCI.3268‑10.2011 21273420
    [Google Scholar]
  24. Irie-SasakiJ. SasakiT. PenningerJ. CD45 regulated signaling pathways.Curr. Top. Med. Chem.20033778379610.2174/1568026033452339 12678844
    [Google Scholar]
  25. De LucaC. VirtuosoA. KoraiS.A. Altered spinal homeostasis and maladaptive plasticity in gfap null mice following peripheral nerve injury.Cells2022117122410.3390/cells11071224 35406788
    [Google Scholar]
  26. AllyM. ZetterbergH. BlennowK. 5 Antemortem plasma gfap predicts Alzheimer’s disease neuropathological changes.J. Int. Neuropsychol. Soc.202329s140941010.1017/S135561772300543X
    [Google Scholar]
  27. PirasI.S. KrateJ. DelvauxE. Transcriptome changes in the Alzheimer’s disease middle temporal gyrus: importance of RNA metabolism and mitochondria-associated membrane genes.J. Alzheimers Dis.201970369171310.3233/JAD‑181113 31256118
    [Google Scholar]
  28. FieldsR.D. Central role of glia in disease research.Neuron Glia Biol.201062919210.1017/S1740925X10000177 20959032
    [Google Scholar]
  29. LiY. JeongJ. SongW. Molecular characteristics and distribution of adult human corneal immune cell types.Front. Immunol.20221379834610.3389/fimmu.2022.798346 35280984
    [Google Scholar]
  30. TripathiP. LodhiA. RaiS. Review of pharmacotherapeutic targets in Alzheimer’s disease and its management using traditional medicinal plants.Degener. Neurol. Neuromuscul. Dis.202414477410.2147/DNND.S452009 38784601
    [Google Scholar]
  31. TripathiP.N. SrivastavaP. SharmaP. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory.Bioorg. Chem.201985829610.1016/j.bioorg.2018.12.017 30605887
    [Google Scholar]
  32. SinghM. AgarwalV. PanchamP. A comprehensive review and androgen deprivation therapy and its impact on Alzheimer’s disease risk in older men with prostate cancer.Degener. Neurol. Neuromuscul. Dis.202414334610.2147/DNND.S445130 38774717
    [Google Scholar]
  33. WuY. EiselU.L.M. Microglia-astrocyte communication in Alzheimer’s disease.J. Alzheimers Dis.202395378580310.3233/JAD‑230199 37638434
    [Google Scholar]
  34. SinghD. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease.J. Neuroinflammation202219120610.1186/s12974‑022‑02565‑0 35978311
    [Google Scholar]
  35. CicognolaC. JanelidzeS. HertzeJ. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment.Alzheimers Res. Ther.20211316810.1186/s13195‑021‑00804‑9 33773595
    [Google Scholar]
  36. ThakurS. DhapolaR. SarmaP. MedhiB. ReddyD.H. Neuroinflammation in Alzheimer’s disease: current progress in molecular signaling and therapeutics.Inflammation202346111710.1007/s10753‑022‑01721‑1 35986874
    [Google Scholar]
  37. WangS. ZhuT. NiW. Early activation of toll-like receptor-3 reduces the pathological progression of Alzheimer’s disease in app/ps1 mouse.Alzheimers Res. Ther.20231513310.1186/s13195‑023‑01186‑w 36797783
    [Google Scholar]
  38. QuanL. UyedaA. MuramatsuR. Central nervous system regeneration: The roles of glial cells in the potential molecular mechanism underlying remyelination.Inflamm. Regen.2022421710.1186/s41232‑022‑00193‑y 35232486
    [Google Scholar]
  39. AltorkiT. MullerW. BrassA. CruickshankS. The role of β2 integrin in dendritic cell migration during infection.BMC Immunol.2021221210.1186/s12865‑020‑00394‑5 33407124
    [Google Scholar]
  40. LopreiatoV. MinutiA. MorittuV.M. Short communication: Inflammation, migration, and cell-cell interaction-related gene network expression in leukocytes is enhanced in simmental compared with holstein dairy cows after calving.J. Dairy Sci.202010321908191310.3168/jds.2019‑17298 31837777
    [Google Scholar]
  41. AmaliaL. Glial fibrillary acidic protein (gfap): neuroinflammation biomarker in acute ischemic stroke.J. Inflamm. Res.2021147501750610.2147/JIR.S342097 35002283
    [Google Scholar]
  42. Pérez-SisquésL. Sancho-BalsellsA. Solana-BalaguerJ. RTP801/REDD1 contributes to neuroinflammation severity and memory impairments in Alzheimer’s disease.Cell Death Dis.202112661610.1038/s41419‑021‑03899‑y 34131105
    [Google Scholar]
  43. HouserM.C. Uriarte HuarteO. WallingsR.L. Progranulin loss results in sex-dependent dysregulation of the peripheral and central immune system.Front. Immunol.202213105641710.3389/fimmu.2022.1056417 36618392
    [Google Scholar]
  44. GirardD. VandiedonckC. How dysregulation of the immune system promotes diabetes mellitus and cardiovascular risk complications.Front. Cardiovasc. Med.2022999171610.3389/fcvm.2022.991716 36247456
    [Google Scholar]
  45. CurryT. BarramedaM-E. CurtinL. Sex-dependent cerebrovascular aging and vulnerability to traumatic brain injury in a transgenic mouse model of a fibrillin-1 associated connective tissue disorder.Physiology (Bethesda)202338S1573143810.1152/physiol.2023.38.S1.5731438
    [Google Scholar]
  46. PanY. ChoyK.H.C. MarriottP.J. Reduced blood‐brain barrier expression of fatty acid‐binding protein 5 is associated with increased vulnerability of APP/PS1 mice to cognitive deficits from low omega‐3 fatty acid diets.J. Neurochem.20181441819210.1111/jnc.14249 29105065
    [Google Scholar]
  47. SrivastavaP. TripathiP.N. SharmaP. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory.Eur. J. Med. Chem.201916311613510.1016/j.ejmech.2018.11.049 30503937
    [Google Scholar]
  48. KowalskaA. Hipoteza kaskady beta-amyloidu - sekwencja wydarzeń prowadzacych do neurodegeneracji w chorobie alzheimera.Neurol. Neurochir. Pol.2004385405411 15565529
    [Google Scholar]
  49. HowardE. MoodyJ.N. HayesJ.P. 19 Gray matter changes in the temporal lobe moderate the relationship between csf beta-amyloid and confrontation naming performance.J. Int. Neuropsychol. Soc.202329s122923010.1017/S1355617723003387
    [Google Scholar]
  50. González-MolinaL.A. Villar-VesgaJ. Henao-RestrepoJ. Extracellular vesicles from 3xtg-ad mouse and Alzheimer’s disease patient astrocytes impair neuroglial and vascular components.Front. Aging Neurosci.20211359392710.3389/fnagi.2021.593927 33679370
    [Google Scholar]
  51. KonstantinidisE. PortalB. MothesT. BerettaC. LindskogM. ErlandssonA. Intracellular deposits of amyloid-beta influence the ability of human iPSC-derived astrocytes to support neuronal function.J. Neuroinflammation2023201310.1186/s12974‑022‑02687‑5 36593462
    [Google Scholar]
  52. RaiS.N. SinghC. SinghA. SinghM.P. SinghB.K. Mitochondrial dysfunction: A potential therapeutic target to treat Alzheimer’s disease.Mol. Neurobiol.20205773075308810.1007/s12035‑020‑01945‑y 32462551
    [Google Scholar]
  53. Di BenedettoG. BurgalettoC. BellancaC.M. MunafòA. BernardiniR. CantarellaG. Role of microglia and astrocytes in Alzheimer’s disease: from neuroinflammation to Ca2+ homeostasis dysregulation.Cells20221117272810.3390/cells11172728 36078138
    [Google Scholar]
  54. MavroudisI. BalmusI.M. CiobicaA. NicoaraM.N. LucaA.C. PaladeD.O. The role of microglial exosomes and mir-124-3p in neuroinflammation and neuronal repair after traumatic brain injury.Life (Basel)2023139192410.3390/life13091924 37763327
    [Google Scholar]
  55. HeC. LiZ. YangM. Non-coding rna in microglia activation and neuroinflammation in Alzheimer’s disease.J. Inflamm. Res.2023164165421110.2147/JIR.S422114 37753266
    [Google Scholar]
  56. Park Jeongsook Role of calcium in developing cellular network.2012
    [Google Scholar]
  57. ChoI.K. YangB. ForestC. QianL. ChanA.W.S. Amelioration of Huntington’s disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington’s disease monkeys.PLoS One2019143e021415610.1371/journal.pone.0214156 30897183
    [Google Scholar]
  58. Yeh Chia-Yu Cortical astroglial atrophy in ageing and Alzheimer's disease.2013
    [Google Scholar]
  59. ShahK. Al-HaidariA. SunJ. KaziJ.U. T cell receptor (TCR) signaling in health and disease.Signal Transduct. Target. Ther.20216141210.1038/s41392‑021‑00823‑w 34897277
    [Google Scholar]
  60. RaabM. SmithX. MatthessY. StrebhardtK. RuddC.E. SKAP1 protein PH domain determines RapL membrane localization and Rap1 protein complex formation for T cell receptor (TCR) activation of LFA-1.J. Biol. Chem.201128634296632967010.1074/jbc.M111.222661 21669874
    [Google Scholar]
  61. LeeS.H. ShinH.J. KimD.Y. Streptochlorin suppresses allergic dermatitis and mast cell activation via regulation of Lyn/Fyn and Syk signaling pathways in cellular and mouse models.PLoS One201389e7419410.1371/journal.pone.0074194 24086321
    [Google Scholar]
  62. HausherrA. TavaresR. HallekM. KrauseG.F. An acidic peptide inhibits the interleukin-6-induced activities of the src family kinases Hck, Lyn and Fyn in myeloma cells.Blood2005106112480010.1182/blood.V106.11.2480.2480
    [Google Scholar]
  63. HuangMin-Mei. Membrane glycoprotein IV (CD 36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets (FYN / YES / LYN / SRC).Proc. Natl. Acad. Sci. USA19918817784448
    [Google Scholar]
  64. AmanollahiM. JameieM. HeidariA. RezaeiN. The dialogue between neuroinflammation and adult neurogenesis: Mechanisms involved and alterations in neurological diseases.Mol. Neurobiol.202360292395910.1007/s12035‑022‑03102‑z 36383328
    [Google Scholar]
  65. HaenigC. AtiasN. TaylorA.K. Interactome mapping provides a network of neurodegenerative disease proteins and uncovers widespread protein aggregation in affected brains.Cell Rep.202032710805010.1016/j.celrep.2020.108050 32814053
    [Google Scholar]
  66. XuH. XuB. WangZ. TanG. ShenS. Inhibition of Wnt/β-catenin signal is alleviated reactive gliosis in rats with hydrocephalus.Childs Nerv. Syst.201531222723410.1007/s00381‑014‑2613‑2 25564198
    [Google Scholar]
  67. SuryaningtyasW. ParenrengiM.A. BajamalA.H. RantamF.A. Lipid peroxidation induces reactive astrogliosis by activating WNT/β-Catenin pathway in hydrocephalus.Malays. J. Med. Sci.2020273344210.21315/mjms2020.27.3.4 32684804
    [Google Scholar]
  68. HolsingerL.J. WardK. DuffieldB. ZachwiejaJ. JallalB. The transmembrane receptor protein tyrosine phosphatase DEP1 interacts with p120ctn.Oncogene200221467067707610.1038/sj.onc.1205858 12370829
    [Google Scholar]
  69. HalleskogC. MulderJ. DahlströmJ. WNT signaling in activated microglia is proinflammatory.Glia201159111913110.1002/glia.21081 20967887
    [Google Scholar]
  70. YangY. ZhangZ. Microglia and wnt pathways: Prospects for inflammation in Alzheimer’s disease.Front. Aging Neurosci.20201211010.3389/fnagi.2020.00110 32477095
    [Google Scholar]
  71. TanJ. TownT. MoriT. CD45 opposes beta-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase.J. Neurosci.200020207587759410.1523/JNEUROSCI.20‑20‑07587.2000 11027218
    [Google Scholar]
  72. ParkS.Y. KimJ.Y. JangG.B. Aberrant activation of the CD45-Wnt signaling axis promotes stemness and therapy resistance in colorectal cancer cells.Theranostics202111188755877010.7150/thno.63446 34522210
    [Google Scholar]
  73. JiaL. Piña-CrespoJ. LiY. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease.Mol. Brain201912110410.1186/s13041‑019‑0525‑5 31801553
    [Google Scholar]
  74. WangQ. HuangX. SuY. Activation of Wnt/β-catenin pathway mitigates blood-brain barrier dysfunction in Alzheimer’s disease.Brain2022145124474448810.1093/brain/awac236 35788280
    [Google Scholar]
  75. GaoH. ChenH. CuiG.Y. HuJ.X. Damage mechanism and therapy progress of the blood-brain barrier after ischemic stroke.Cell Biosci.202313119610.1186/s13578‑023‑01126‑z 37915036
    [Google Scholar]
  76. HuangM. LiangY. ChenH. XuB. ChaiC. XingP. The role of fluoxetine in activating Wnt/β-catenin signaling and repressing β-amyloid production in an Alzheimer mouse model.Front. Aging Neurosci.20181016410.3389/fnagi.2018.00164 29910725
    [Google Scholar]
  77. VargasJ.Y. FuenzalidaM. InestrosaN.C. In vivo activation of wnt signaling pathway enhances cognitive function of adult mice and reverses cognitive deficits in an Alzheimer’s disease model.J. Neurosci.20143462191220210.1523/JNEUROSCI.0862‑13.2014 24501359
    [Google Scholar]
  78. InestrosaN.C. ToledoE.M. The role of Wnt signaling in neuronal dysfunction in Alzheimer’s disease.Mol. Neurodegener.200831910.1186/1750‑1326‑3‑9 18652670
    [Google Scholar]
/content/journals/car/10.2174/0115672050333760241010061547
Loading
/content/journals/car/10.2174/0115672050333760241010061547
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Alzheimer's disease; GFAP; molecular network; neuroinflammation; protein interactions; PTPRC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test