Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, with a significant burden on global health. AD is characterized by a progressive cognitive decline and memory loss. Emerging research suggests a potential link between periodontitis, specifically the presence of oral bacteria such as (), and AD progression. produces an enzyme, Agmatine deiminase (AgD), which converts agmatine to N-carbamoyl putrescine (NCP), serving as a precursor to essential polyamines. Recent studies have confirmed the correlation between disruptions in polyamine metabolism and cognitive impairment.

Objective

This study aims to investigate the dysregulation of Agmatine deiminase (PgAgD) in the context of AD.

Methods

Saliva samples were collected from a total of 54 individuals, including 27 AD patients and 27 healthy controls. The expression of the gene was analyzed using quantitative Real-Time PCR.

Results

The results showed a significant decrease in gene expression in the saliva samples of AD patients compared to healthy controls. This downregulation was found in AD patients with advanced stages of periodontitis. Additionally, a correlation was observed between the decrease in expression and the 30-item Mini-Mental State Examination (MMSE) score.

Conclusion

These findings suggest that measuring expression in saliva could be a noninvasive tool for monitoring AD progression and aid in the early diagnosis of patients with periodontitis. Further research is needed to validate our results and explore the underlying mechanisms linking periodontitis, PgAgD expression, and AD pathophysiology.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050327009240808103542
2024-04-01
2024-11-21
Loading full text...

Full text loading...

References

  1. PrinceM. WimoA. GuerchetM. AliG.C. WuY.T. PrinaM. World Alzheimer Report 2015. The Global Impact of Dementia. An Analysis of Prevalence, Incidence, Cost and Trends.Alzheimer Disease International2015
    [Google Scholar]
  2. OlsenI. SinghraoS.K. PotempaJ. Citrullination as a plausible link to periodontitis, rheumatoid arthritis, atherosclerosis and Alzheimer’s disease.J. Oral Microbiol.2018101148774210.1080/20002297.2018.148774229963294
    [Google Scholar]
  3. TripathiP. LodhiA. RaiS. NandiN. DumogaS. YadavP. Review of Pharmacotherapeutic Targets in Alzheimer’s Disease and Its Management Using Traditional Medicinal Plants.2024144774
    [Google Scholar]
  4. ToodayanN. Professor Alois Alzheimer (1864–1915): Lest we forget.J. Clin. Neurosci.201631475510.1016/j.jocn.2015.12.03227312282
    [Google Scholar]
  5. IvanovS.M. AtanasovaM. DimitrovI. DoytchinovaI.A. Cellular polyamines condense hyperphosphorylated Tau, triggering Alzheimer’s disease.Sci. Rep.20201011009810.1038/s41598‑020‑67119‑x32572101
    [Google Scholar]
  6. JiaL. YangJ. ZhuM. PangY. WangQ. WeiQ. LiY. LiT. LiF. WangQ. LiY. WeiY. A metabolite panel that differentiates Alzheimer’s disease from other dementia types.Alzheimers Dement.20221871345135610.1002/alz.1248434786838
    [Google Scholar]
  7. TripathiP.N. SrivastavaP. SharmaP. TripathiM.K. SethA. TripathiA. RaiS.N. SinghS.P. ShrivastavaS.K. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory.Bioorg. Chem.201985829610.1016/j.bioorg.2018.12.01730605887
    [Google Scholar]
  8. RaiS.N. SinghC. SinghA. SinghM.P. SinghB.K. Mitochondrial dysfunction: A potential therapeutic target to treat Alzheimer’s disease.Mol. Neurobiol.20205773075308810.1007/s12035‑020‑01945‑y32462551
    [Google Scholar]
  9. AguayoS. SchuhC.M.A.P. VicenteB. AguayoL.G. Association between Alzheimer’s disease and oral and gut microbiota: Are pore forming proteins the missing link?J. Alzheimers Dis.2018651294610.3233/JAD‑18031930040725
    [Google Scholar]
  10. SpielmannN. WongD.T. Saliva: diagnostics and therapeutic perspectives.Oral Dis.201117434535410.1111/j.1601‑0825.2010.01773.x21122035
    [Google Scholar]
  11. CockburnA.F. DehlinJ.M. NganT. CroutR. BoskovicG. DenvirJ. PrimeranoD. PlassmanB.L. WuB. CuffC.F. High throughput DNA sequencing to detect differences in the subgingival plaque microbiome in elderly subjects with and without dementia.Investig. Genet.2012311910.1186/2041‑2223‑3‑1922998923
    [Google Scholar]
  12. WeberC. DiltheyA. FinzerP. The role of microbiome-host interactions in the development of Alzheimer´s disease.Front. Cell. Infect. Microbiol.202313115102110.3389/fcimb.2023.115102137333848
    [Google Scholar]
  13. BouftasM. A systematic review on the feasibility of salivary biomarkers for Alzheimer's Disease.J Prev Alzheimers Dis.2020818491
    [Google Scholar]
  14. MakiK.A. KazmiN. BarbJ.J. AmesN. The oral and gut bacterial microbiomes: Similarities, differences, and connections.Biol. Res. Nurs.202123172010.1177/109980042094160632691605
    [Google Scholar]
  15. PiekutT. HurłaM. BanaszekN. SzejnP. DorszewskaJ. KozubskiW. Infectious agents and Alzheimer's disease.J Integr Neurosci.20222127310.31083/j.jin210207335364661
    [Google Scholar]
  16. DominySS. LynchC. ErminiF. BenedykM. MarczykA. KonradiA. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors.Sci. Adv.20195eaau3333
    [Google Scholar]
  17. van de HaarH.J. BurgmansS. JansenJ.F.A. van OschM.J.P. van BuchemM.A. MullerM. HofmanP.A.M. VerheyF.R.J. BackesW.H. Blood-brain barrier leakage in patients with early Alzheimer disease.Radiology2016281252753510.1148/radiol.201615224427243267
    [Google Scholar]
  18. LeiS. LiJ. YuJ. LiF. PanY. ChenX. MaC. ZhaoW. TangX. Porphyromonas gingivalis bacteremia increases the permeability of the blood-brain barrier via the Mfsd2a/Caveolin-1 mediated transcytosis pathway.Int. J. Oral Sci.2023151310.1038/s41368‑022‑00215‑y36631446
    [Google Scholar]
  19. HuY. LiH. ZhangJ. ZhangX. XiaX. QiuC. LiaoY. ChenH. SongZ. ZhouW. Periodontitis induced by P. gingivalis-LPS is associated with neuroinflammation and learning and memory impairment in sprague-dawley rats.Front. Neurosci.20201465810.3389/fnins.2020.0065832714134
    [Google Scholar]
  20. LamontR.J. KooH. HajishengallisG. The oral microbiota: dynamic communities and host interactions.Nat. Rev. Microbiol.2018161274575910.1038/s41579‑018‑0089‑x30301974
    [Google Scholar]
  21. NieR. WuZ. NiJ. ZengF. YuW. ZhangY. KadowakiT. KashiwazakiH. TeelingJ.L. ZhouY. Porphyromonas gingivalis infection induces amyloid-β accumulation in monocytes/macrophages.J. Alzheimers Dis.201972247949410.3233/JAD‑19029831594220
    [Google Scholar]
  22. TangZ. LiangD. ChengM. SuX. LiuR. ZhangY. WuH. Effects of Porphyromonas gingivalis and its underlying mechanisms on Alzheimer-like tau hyperphosphorylation in sprague- dawley rats.J. Mol. Neurosci.20217118910010.1007/s12031‑020‑01629‑132557144
    [Google Scholar]
  23. SeteM.R.C. CarlosJ.C. Mello-NetoJ.M. Lira-JuniorR. BritoF. BostromE.A. SztajnbokF.R. FigueredoC.M. Impact of chronic gingivitis management on the cytokine and anti-PPAD expressions in juvenile systemic lupus erythematosus: A six-month follow-up.J. Periodontal Res.20215661132114010.1111/jre.1292434510434
    [Google Scholar]
  24. ZhaoX. LiuJ. ZhangC. YuN. LuZ. ZhangS. LiY. LiQ. LiuJ. LiuD. PanY. Porphyromonas gingivalis exacerbates ulcerative colitis via Porphyromonas gingivalis peptidylarginine deiminase.Int. J. Oral Sci.20211313110.1038/s41368‑021‑00136‑234593756
    [Google Scholar]
  25. JonesJ.E. DreytonC.J. FlickH. CauseyC.P. ThompsonP.R. Mechanistic studies of agmatine deiminase from multiple bacterial species.Biochemistry201049439413942310.1021/bi101405y20939536
    [Google Scholar]
  26. Sandusky-BeltranL.A. KovalenkoA. PlacidesD.S. RatnasamyK. MaC. HuntJ.B.Jr LiangH. CalahatianJ.I.T. MichalskiC. FahnestockM. BlairL.J. DarlingA.L. BakerJ.D. FontaineS.N. DickeyC.A. GamsbyJ.J. NashK.R. AbnerE. SelenicaM.L.B. LeeD.C. Aberrant AZIN2 and polyamine metabolism precipitates tau neuropathology.J. Clin. Invest.20211314e12629910.1172/JCI12629933586680
    [Google Scholar]
  27. GhoshI. SankheR. MudgalJ. AroraD. NampoothiriM. Spermidine, an autophagy inducer, as a therapeutic strategy in neurological disorders.Neuropeptides20208310208310.1016/j.npep.2020.10208332873420
    [Google Scholar]
  28. BerginD.H. JingY. MockettB.G. ZhangH. AbrahamW.C. LiuP. Altered plasma arginine metabolome precedes behavioural and brain arginine metabolomic profile changes in the APPswe/PS1ΔE9 mouse model of Alzheimer’s disease.Transl. Psychiatry20188110810.1038/s41398‑018‑0149‑z29802260
    [Google Scholar]
  29. RodriguezP.C. OchoaA.C. Al-KhamiA.A. Arginine metabolism in myeloid cells shapes innate and adaptive immunity.Front. Immunol.201789310.3389/fimmu.2017.0009328223985
    [Google Scholar]
  30. HernándezVM. ArteagaA. DunnMF. Diversity, properties and functions of bacterial arginases.FEMS Microbiol.Rev.202145fuab03410.1093/femsre/fuab034
    [Google Scholar]
  31. RealeM. Gonzales-PortilloI. BorlonganC.V. Saliva, an easily accessible fluid as diagnostic tool and potent stem cell source for Alzheimer’s Disease: Present and future applications.Brain Res.20201727146535
    [Google Scholar]
  32. GleerupHS. HasselbalchSG. SimonsenAH. Biomarkers for Alzheimer’s Disease in saliva: A systematic review.Dis. Markers20192019111
    [Google Scholar]
  33. FrançoisM. LeifertW. MartinsR. ThomasP. FenechM. Biomarkers of Alzheimer’s disease risk in peripheral tissues; focus on buccal cells.Curr. Alzheimer Res.201411651953110.2174/156720501166614061810382724938500
    [Google Scholar]
  34. Ben JemaaS. Attia RomdhaneN. Bahri-MrabetA. JendliA. Le GallD. BellajT. An arabic version of the cognitive subscale of the Alzheimer’s Disease Assessment Scale (ADAS-Cog): Reliability, validity, and normative data.J. Alzheimers Dis.2017601112110.3233/JAD‑17022228505978
    [Google Scholar]
  35. BoutagaK. van WinkelhoffA.J. Vandenbroucke-GraulsC.M.J.E. SavelkoulP.H.M. Comparison of real-time PCR and culture for detection of Porphyromonas gingivalis in subgingival plaque samples.J. Clin. Microbiol.200341114950495410.1128/JCM.41.11.4950‑4954.200314605122
    [Google Scholar]
  36. ParaskevaidiM. AllsopD. KarimS. MartinF.L. CreanS. Diagnostic biomarkers for Alzheimer’s disease using non-invasive specimens.J. Clin. Med.202096167310.3390/jcm906167332492907
    [Google Scholar]
  37. HajishengallisG. LamontR.J. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology.Mol. Oral Microbiol.201227640941910.1111/j.2041‑1014.2012.00663.x23134607
    [Google Scholar]
  38. PisaniF. PisaniV. ArcangeliF. HardingA. SinghraoS.K. The mechanistic pathways of periodontal pathogens entering the brain: The potential role of Treponema denticola in Tracing Alzheimer’s disease pathology.Int. J. Environ. Res. Public Health20221915938610.3390/ijerph1915938635954742
    [Google Scholar]
  39. BorsaL. DuboisM. SaccoG. LupiL. Analysis the link between periodontal diseases and Alzheimer’s disease: A systematic review.Int. J. Environ. Res. Public Health20211817931210.3390/ijerph1817931234501899
    [Google Scholar]
  40. SekulaB. DauterZ. Structural study of agmatine iminohydrolase from Medicago truncatula, the second enzyme of the agmatine route of putrescine biosynthesis in plants.Front. Plant Sci.20191032010.3389/fpls.2019.0032030984210
    [Google Scholar]
  41. WirthM. BensonG. SchwarzC. KöbeT. GrittnerU. SchmitzD. SigristS.J. BohlkenJ. StekovicS. MadeoF. FlöelA. The effect of spermidine on memory performance in older adults at risk for dementia: A randomized controlled trial.Cortex201810918118810.1016/j.cortex.2018.09.01430388439
    [Google Scholar]
  42. JingY.H. YanJ.L. WangQ.J. ChenH.C. MaX.Z. YinJ. GaoL.P. Spermidine ameliorates the neuronal aging by improving the mitochondrial function in vitro.Exp. Gerontol.2018108778610.1016/j.exger.2018.04.00529649571
    [Google Scholar]
  43. MaglioneM. KochlamazashviliG. EisenbergT. RáczB. MichaelE. ToppeD. StumpfA. WirthA. ZeugA. MüllerF.E. Moreno-VelasquezL. SammonsR.P. HoferS.J. MadeoF. MaritzenT. MaierN. PonimaskinE. SchmitzD. HauckeV. SigristS.J. Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses.Sci. Rep.2019911961610.1038/s41598‑019‑56133‑331873156
    [Google Scholar]
  44. EsserD. Alvarez-LlamasG. De VriesM.P. WeeningD. VonkR.J. RoelofsenH. Sample stability and protein composition of saliva: implications for its use as a diagnostic fluid.Biomark. Insights20083BMI.S60710.4137/BMI.S60719578491
    [Google Scholar]
  45. SettiG. PezziM.E. VianiM.V. PertinhezT.A. CassiD. MagnoniC. BelliniP. MusolinoA. VescoviP. MeletiM. Salivary MicroRNA for diagnosis of cancer and systemic diseases: A systematic review.Int. J. Mol. Sci.202021390710.3390/ijms2103090732019170
    [Google Scholar]
  46. SochaE. KoślińskiP. KobaM. Mądra-GackowskaK. Kędziora-KornatowskaK. GackowskiM. Daghir-WojtkowiakE. Amino acid levels as potential biomarker of elderly patients with dementia.Brain Sci.2020101291410.3390/brainsci1012091433260889
    [Google Scholar]
  47. LiuP. FleeteM.S. JingY. CollieN.D. CurtisM.A. WaldvogelH.J. FaullR.L.M. AbrahamW.C. ZhangH. Altered arginine metabolism in Alzheimer’s disease brains.Neurobiol. Aging20143591992200310.1016/j.neurobiolaging.2014.03.01324746363
    [Google Scholar]
  48. MahajanU.V. VarmaV.R. GriswoldM.E. BlackshearC.T. AnY. OommenA.M. VarmaS. TroncosoJ.C. PletnikovaO. O’BrienR. HohmanT.J. Legido-QuigleyC. ThambisettyM. Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study.PLoS Med.2020171e100301210.1371/journal.pmed.100301231978055
    [Google Scholar]
  49. MohammedH.A. AbdulkareemA.A. ZardawiF.M. GulS.S. Determination of the accuracy of salivary biomarkers for periodontal diagnosis.Diagnostics (Basel)20221210248510.3390/diagnostics1210248536292174
    [Google Scholar]
  50. NodaK. LimY. GotoR. SengokuS. KodamaK. Cost-effectiveness comparison between blood biomarkers and conventional tests in Alzheimer’s disease diagnosis.Drug Discov. Today202429310391110.1016/j.drudis.2024.10391138311028
    [Google Scholar]
/content/journals/car/10.2174/0115672050327009240808103542
Loading
/content/journals/car/10.2174/0115672050327009240808103542
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test