Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2405-4631
  • E-ISSN: 2405-464X

Abstract

Introduction

Oil is one of the primary commodities of all countries globally and is, in essence, the energy base of all that we know as transportation. Therefore, price fluctuations of derivatives, especially fuel and oil derivatives, are the policymakers’ main concerns because they can cause serious problems, such as inflation in commodity prices.

Objective

The impact of fuel carriers’ prices on the consumer price index remains a subject of debate and research. This paper aims to develop a model to define the inflation regime in Iran and then investigate the impact of gasoline and diesel price on the total inflation rate.

Methods

In this study, using the central bank time series and available data on energy balance and World Bank data banks, a non-linear distributed online delay regression model is developed to analyze the relationship between fuel price and essential commodity inflation.

Results

The results show that there is an impact of gasoline prices on inflation. It does not have much effect in the long term, but diesel can somewhat influence raising prices, which can exacerbate poverty in the community that needs special attention.

Conclusion

It was also found that increase in diesel’s price is harmful to the economy because it can stimulate inflation in the long term. However, in the short term, diesel does not cause any significant inflation in the prices. While gasoline prices can have many short-term social effects, this paper suggests that the Iranian government's control of diesel fuel prices prevents long-term inflation and inflation in consumer price rate.

Loading

Article metrics loading...

/content/journals/cae/10.2174/2405463104666210427112311
2021-04-27
2025-01-19
Loading full text...

Full text loading...

References

  1. KpodarK. AbdallahC. Dynamic fuel price pass-through: Evidence from a new global retail fuel price database.Energy Econ.20176630331210.1016/j.eneco.2017.06.017
    [Google Scholar]
  2. LiJ. XiC. LongH. The roles of inter-fuel substitution and inter-market contagion in driving energy prices: Evidences from China’s coal market.Energy Econ20198410.1016/j.eneco.2019.104525
    [Google Scholar]
  3. JansenD.J. JonkerN. Fuel tourism in Dutch border regions: Are only salient price differentials relevant?Energy Econ.20187414315310.1016/j.eneco.2018.05.036
    [Google Scholar]
  4. BalaguerJ. RipollésJ. The dynamics pattern of price dispersion in retail fuel markets.Energy Econ.20187454656410.1016/j.eneco.2018.07.004
    [Google Scholar]
  5. RitterN. SchmidtC.M. VanceC. Short-run fuel price responses: At the pump and on the road.Energy Econ.201658677610.1016/j.eneco.2016.06.013
    [Google Scholar]
  6. RiversN. SchaufeleB. Gasoline price and new vehicle fuel efficiency: Evidence from Canada.Energy Econ.20176845446510.1016/j.eneco.2017.10.026
    [Google Scholar]
  7. RodriguesN. LosekannL. FilhoG.S. Demand of automotive fuels in Brazil: Underlying energy demand trend and asymmetric price response.Energy Econ.20187464465510.1016/j.eneco.2018.07.005
    [Google Scholar]
  8. PereiraM.A. PereiraR.M. On the environmental, economic and budgetary impacts of fossil fuel prices: A dynamic general equilibrium analysis of the Portuguese case.Energy Econ.20144224826110.1016/j.eneco.2014.01.006
    [Google Scholar]
  9. GalN. MilsteinI. TishlerA. Fuel cost uncertainty, capacity investment and price in a competitive electricity market.Energy Econ.20176123324010.1016/j.eneco.2016.11.014
    [Google Scholar]
  10. BalaguerJ. RipollésJ. Asymmetric fuel price responses under heterogeneity.Energy Econ.20165428129010.1016/j.eneco.2015.12.006
    [Google Scholar]
  11. Di GiacomoM. PiacenzaM. ScerviniF. TuratiG. Should we resurrect “TIPP ‘flottante’ if oil price booms again? Specific taxes as fuel consumer price stabilizers”.Energy Econ.20155154455210.1016/j.eneco.2015.08.004
    [Google Scholar]
  12. KangW. de GraciaF.P. RattiR.A. The asymmetric response of gasoline prices to oil price shocks and policy uncertainty.Energy Econ.201977667910.1016/j.eneco.2018.09.007
    [Google Scholar]
  13. AparicioD. BertolottoM.I. Forecasting inflation with online prices.Int. J. Forecast.20203623224710.1016/j.ijforecast.2019.04.018
    [Google Scholar]
  14. SunY. ZhangX. HongY. WangS. Asymmetric pass-through of oil prices to gasoline prices with interval time series modelling.Energy Econ.20197816517310.1016/j.eneco.2018.10.027
    [Google Scholar]
  15. VillavicencioA.L. PourroyM. Inflation target and (a)symmetries in the oil price pass-through to inflation.Energy Econ.20198086087510.1016/j.eneco.2019.01.025
    [Google Scholar]
  16. BumpassD. DouglasC. GinnV. Testing for short and long-run asymmetric responses and structural breaks in the retail gasoline supply chain.Energy Econ.20198331131810.1016/j.eneco.2019.07.021
    [Google Scholar]
  17. OuS. LinZ. XuG. The retailed gasoline price in China: Time-series analysis and future trend projection.Energy202019110.1016/j.energy.2019.116544
    [Google Scholar]
  18. BaghestaniH. Predicting gasoline prices using Michigan survey data.Energy Econ.201550273210.1016/j.eneco.2015.04.015
    [Google Scholar]
  19. TuleM. K. SalisuA. A. ChiemekeC.C. Can agricultural commodity prices predict Nigeria’s inflation?J. Commod. Mark.20191610.1016/j.jcomm.2019.02.002
    [Google Scholar]
  20. AkimayaM. DahlC. Simulation of price controls for different grade of gasoline: The case of Indonesia.Energy Econ.20176837338210.1016/j.eneco.2017.10.012
    [Google Scholar]
  21. BanzhafH.S. KasimM.T. Fuel consumption and gasoline prices: The role of assortative matching between households and automobiles.J. Environ. Econ. Manage.20199512510.1016/j.jeem.2018.11.010
    [Google Scholar]
  22. BinderC.C. Inflation expectations and the price at the pump.J. Macroecon.20185811810.1016/j.jmacro.2018.08.006
    [Google Scholar]
  23. SalahA. Oil price and inflation dynamics in the Gulf Cooperation Council countries.Energy2019181997101110.1016/j.energy.2019.05.208
    [Google Scholar]
  24. ChangK. ZhangC. Asymmetric dependence structure between emissions allowances and wholesale diesel/gasoline prices in emerging China’s emissions trading scheme pilots.Energy201816412413610.1016/j.energy.2018.08.155
    [Google Scholar]
  25. PilartI.C. CorreljéA.F. PalaciosM.B. Competition, regulation, and pricing behaviour in the Spanish retail gasoline market.Energy Policy20093721922810.1016/j.enpol.2008.08.018
    [Google Scholar]
  26. DashP. P. RohiA. K. DevaguptapuA. Assessing the (de-)anchoring of ’households’ long-term inflation expectations in the US J. Macroecon.20206310.1016/j.jmacro.2019.103183
    [Google Scholar]
  27. ZhaoL.T. HeL.Y. ChengL. ZengG.R. HuangZ. The effect of gasoline consumption tax on consumption and carbon emissions during a period of low oil prices.J. Clean. Prod.20181711429143610.1016/j.jclepro.2017.10.117
    [Google Scholar]
  28. CarpioL.G.T. The effects of oil price volatility on ethanol, gasoline, and sugar price forecasts.Energy20191811012102210.1016/j.energy.2019.05.067
    [Google Scholar]
  29. DouglasC.C. HerreraA.M. Dynamic pricing and asymmetries in retail gasoline markets: What can they tell us about price stickiness?Econ. Lett.201412224725210.1016/j.econlet.2013.11.025
    [Google Scholar]
  30. YusoffN.Y.M. BekhetH.A. The effect of energy subsidy removal on energy demand and potential energy savings in Malaysia.Procedia Econ. Finance20063518919710.1016/S2212‑5671(16)00024‑1
    [Google Scholar]
  31. NasabE.H. RezaghilizadeM. Investigating the financial roots of inflation in Iran with emphasis on the budget deficit.J. Econ. Res.201014370
    [Google Scholar]
  32. KochS. ZimaM. AnderssonG. Potentials and applications of coordinated groups of thermal household appliances for power system control purposesIEEE-PES/IAS Conference on Sustainable Alternative EnergyValencia Spain20091718
    [Google Scholar]
  33. HongJ. The development implementation and application of demand side management and control (dsm+c) algorithm for integrating microgeneration system within built environmentPhd Thesis, University of Strathclyde, Glasgow, Scotland2009
    [Google Scholar]
  34. GeidlM. Integrated modeling and optimization of multi-carrier energy systems.ETH Zurich2007
    [Google Scholar]
  35. GeidlM. KoeppelG. Favre-PerrodP. KloecklB. AnderssonG. FroehlichK. Energy hubs for the future.IEEE Power Energy Mag.200751243010.1109/MPAE.2007.264850
    [Google Scholar]
  36. GellingsC.W. ChamberlinJ.H. Demand-Side Management: Concepts and Methods.Farimont Press1993
    [Google Scholar]
  37. GuoM. BuY. ChengJ. Natural gas security in china: a simulation of evolutionary trajectory and obstacle degree analysis.Sustainability20191119610.3390/su11010096
    [Google Scholar]
  38. CabaluH. Indicators of security of natural gas supply in Asia.Energy Policy201038121822510.1016/j.enpol.2009.09.008
    [Google Scholar]
  39. BiresseliogluM.E. YelkenciT. OzI.O. Investigating the natural gas supply security: A new perspective.Energy20158016817610.1016/j.energy.2014.11.060
    [Google Scholar]
  40. GuoM.J. BuY. ChenC.X. Assessment of natural gas security and its impact factors in China.Ziyuan Kexue2018401224252437
    [Google Scholar]
  41. BerkI. EdigerV.S. A historical assessment of Turkey’s natural gas import vulnerability.Energy201814554054710.1016/j.energy.2018.01.022
    [Google Scholar]
  42. WangD. BorthwickA.G. HeH. WangY. ZhuJ. LuY. XuP. ZengX. WuJ. WangL. ZouX. LiuJ. ZouY. HeR. A hybrid wavelet de-noising and Rank-Set Pair Analysis approach for forecasting hydro-meteorological time series.Environ. Res.201816026928110.1016/j.envres.2017.09.033 29032311
    [Google Scholar]
  43. SuM.R. YangZ.F. ChenB. Urban ecosystem health assessment based on energy and set pair analysis-A comparative study of typical Chinese cities.Ecol. Modell.2009220182341234810.1016/j.ecolmodel.2009.06.010
    [Google Scholar]
  44. LiC. SunL. JiaJ. Risk assessment of water pollution sources based on an integrated k-means clustering and set pair analysis method in the region of Shiyan China.Sci. Total Environ.2016557-55830731610.1016/j.scitotenv.2016.03.069
    [Google Scholar]
  45. BP statistical review of world energy, 2018Knoema.com. [Online]. Available from: https://knoema.com/infographics/usgdfhg/bp-statistical-review-of-world-energy-2018 [Accessed: 08-Oct-2021]
  46. China NBoSotPsRoChina Statistical Yearbook, 2006–2016.Beijing, ChinaChina Statistics Press2017
    [Google Scholar]
  47. China NBoSotPsRoChina Statistical Yearbook, 2006–2016.Beijing, ChinaChina Statistics Press2017
    [Google Scholar]
  48. China NBoSotPsRoChina Urban Construction Statistical Yearbook 2006–2016.Beijing, ChinaChina Statistics Press2017
    [Google Scholar]
  49. HartleyP. MedlockK.B.III RosthalJ. “The relationship between crude oil and natural gas prices”, Prepared in Conjunction with an Energy Study Sponsored by The James A.Baker III Institute for Public Policy and Mckinsey and Company2007
    [Google Scholar]
  50. ErdogduE. Natural gas demand in Turkey.Appl. Energy200987121121910.1016/j.apenergy.2009.07.006
    [Google Scholar]
  51. BougP. Modelling energy demand in Germany a cointegration approach.Statistics Norway, Document2000200011118
    [Google Scholar]
  52. Techno consultant International limited, People's Republic of Bangladesh: Preparing the clean fuel sector development program, Final report20092(Main report), Project number: 38164.
    [Google Scholar]
  53. Annual report 2007-08Bangladesh Power Development Board. 2008
    [Google Scholar]
  54. NellW.P. CooperC.J. A critical review on IEA’s oil demand forecast for China.Energy Policy20083631096110610.1016/j.enpol.2007.11.025
    [Google Scholar]
  55. LabanderiaX. LabeagaJ.M. RodriguezM. A residential energy demand system for Spain.Energy J.20062728711110.5547/ISSN0195‑6574‑EJ‑Vol27‑No2‑6
    [Google Scholar]
  56. GujaratiD.N. Basic Econometrics.4th edNew York, United StatesMcGraw-Hill2003
    [Google Scholar]
  57. WadudZ. Personal tradable carbon permits for road transport: Heterogeneity of demand responses and distributional analysisPhD. Thesis, Imperial College London, London, United Kingdom2007
    [Google Scholar]
  58. LouwK. ConradieB. HowellsM. DekenahM. Determinants of electricity demand for newly electrified low-income African households.Energy Policy20083682814282010.1016/j.enpol.2008.02.032
    [Google Scholar]
  59. KaboudanM. A. LiuQ. W. Forecasting quarterly US demand for natural gasInformation Technology for Economics and Management212004
    [Google Scholar]
  60. Annual report 2009 - ICC Bangladesh energy regulatory commission (BERC), petrobangla (Bangladesh oil, - [PDF document]Vdocuments.mx, 30-Apr-2020. [Online]Available from: https://vdocuments.mx/annual-report-2009-icc-bangladesh-energy-regulatory-commission-berc-petrobangla.html [Accessed: 08-Oct-2021]
    [Google Scholar]
  61. Econstats website", [Online]. Available from: http://www.econstats.com/ [Accessed: 08-Oct-2021]
  62. AdjayeJ.A. The relationship between energy consumption, energy prices and economic growth: Time series evidence from Asian developing countries.Energy Econ.200022661562510.1016/S0140‑9883(00)00050‑5
    [Google Scholar]
  63. HangL. TuM. The impacts of energy prices on energy intensity: Evidence from China.Energy Policy20063552978298810.1016/j.enpol.2006.10.022
    [Google Scholar]
  64. “Energy and Climate Change,” Iea.org. [Online].Available from: https://www.iea.org/reports/energy-and-climate-change [Accessed: 08-Oct-2021]
  65. Ntdc.org [Online].Available from: http://switchboard.ntdc.org/blogs/plehner/natural_gas_a_bridge_to_the_ne.html [Accessed: 08-Oct-2021]
  66. SwanL.G. UgursalV.I. Modeling of end-use energy consumption in the residential sector: A review of modeling techniques.Renew. Sustain. Energy Rev.20091381819183510.1016/j.rser.2008.09.033
    [Google Scholar]
  67. Action plan for energy efficiency: Realising the potential COM(2006) 546 Brussels 2006
    [Google Scholar]
  68. SaidurR. MasjukiH. JamaluddinM. An application of energy and energy analysis in residential sector of Malaysia.Energy Policy20073521050106310.1016/j.enpol.2006.02.006
    [Google Scholar]
  69. ViklundM. Energy policy options- from the perspective of public attitudes and risk perceptions.Energy Policy200432101159117110.1016/S0301‑4215(03)00079‑X
    [Google Scholar]
  70. Report on smart gas meteringBrussels Tech. Rep.2010
    [Google Scholar]
  71. FagianiM. SquartiniS. GabrielliL. PizzichiniM. SpinsanteS. Computational intelligence in smart water and gas grids: An up-to-date overviewNeural Networks (IJCNN) 2014 International Joint Conference IEEE201492192610.1109/IJCNN.2014.6889603
    [Google Scholar]
  72. BrabecM. O. Konár, M. Maly, E. Pelikán, and J. Vondrلëek, “A statistical model for natural gas standardized load profiles”.J. R. Stat. Soc. Ser. C Appl. Stat.200958112313910.1111/j.1467‑9876.2008.00636.x
    [Google Scholar]
  73. BrabecM. O. Konلr, M. Maly, I. Kasanick‎, and E. Pelikán, “Statistical models for disaggregation and reaggregation of natural gas consumption data”.J. Appl. Stat.201542592193710.1080/02664763.2014.993365
    [Google Scholar]
  74. YangS.l. ShenC. A review of electric load classification in smart grid environment.Renew. Sustain. Energy Rev.20132410311010.1016/j.rser.2013.03.023
    [Google Scholar]
  75. KimY.I. KoJ.M. ChoiS.H. “Methods for generating TLPs (typical load profiles) for smart grid-based energy programs”, Computational Intelligence Applications.Smart Grid.CIASG20111610.1109/CIASG.2011.5953331
    [Google Scholar]
  76. SathiracheewinS. SurapatanaV. Daily typical load clustering of residential customersThe 8th Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand - Conference,201110.1109/ECTICON.2011.5947960
    [Google Scholar]
  77. HossainM. J. KabirA. RahmanM. M. KabirB. IslamM. R. Determination of typical load profile of consumers using fuzzy c-means clustering algorithmInt. J. Soft Comput. Eng.201122312307
    [Google Scholar]
  78. LoK. ZakariaZ. SohodM. Determination of consumers’ load profiles based on two-stage fuzzy c-meansProceedings of the 5th WSEAS International Conference on Power Systems and Electromagnetic Compatibility Greece2005212217
    [Google Scholar]
  79. ViegasJ.L. VieiraS.M. SousaJ.M.C. Fuzzy clustering and prediction of electricity demand based on household characteristicsProceedings of the 16th World Congress of the International Fuzzy Systems Association (IFSA) and the European Society for Fuzzy Logic and Technology (EUSFLAT)201510.2991/ifsa‑eusflat‑15.2015.147
    [Google Scholar]
  80. DuinR.P.W. PekalskaE. Dissimilarity representation for pattern recognition, the: Foundations and applications.Singapore World Scientific Publishing 2005
    [Google Scholar]
  81. Smart metering information paper: gas customer behaviour trial findings report Commission for Energy Regulation (CER)Tech. Rep.2011[Online]. Available from: https://www.ucd.ie/issda/t4media/Gas%20Customer%20Behaviour%20Trial%20Findings%20Report.pdf [Accessed: 08-Oct-2021]
    [Google Scholar]
  82. J. Valente de Oliveira and W. Pedrycz EdsAdvances in Fuzzy Clustering and its Applications.Nashville, TN: John Wiley & Sons200710.1002/9780470061190
    [Google Scholar]
  83. RamosS. DuarteJ.M. DuarteF.J. ValeZ. A data-mining-based methodology to support my electricity customers characterization.Energy Build.201591162510.1016/j.enbuild.2015.01.035
    [Google Scholar]
  84. WijayaT.K. GanuT. ChakrabortyD. AbererK. SeetharamD.P. Consumer segmentation and knowledge extraction from smart meter and survey dataThe Proceeding of SIAM International Conference on Data Mining (SDM14)201410.1137/1.9781611973440.26
    [Google Scholar]
  85. RousseeuwP.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis.J. Comput. Appl. Math.198720536510.1016/0377‑0427(87)90125‑7
    [Google Scholar]
  86. DaviesD.L. BouldinD.W. A cluster separation measure.IEEE Trans. Pattern Anal. Mach. Intell.1979PAMI-1222422710.1109/TPAMI.1979.4766909
    [Google Scholar]
  87. DunnJ.C. Well-separated clusters and optimal fuzzy partitions.J. Cybern.1974419510410.1080/01969727408546059
    [Google Scholar]
  88. StrehlA. Relationship-based clustering and cluster ensembles for high-dimensional data mining.2002Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.364.9376rep=rep1type=pdf
    [Google Scholar]
  89. XieX.L. BeniG. A validity measure for fuzzy clustering.IEEE Trans. Pattern Anal. Mach. Intell.1991884184710.1109/34.85677
    [Google Scholar]
  90. PalN.R. BezdekJ.C. On cluster validity for the fuzzy c-means modelFuzzy Systems IEEE Transactions on19953337037910.1109/91.413225
    [Google Scholar]
  91. Data from the Commission for Energy Regulation (CER)[Online]. Available from: http://www.ued.ie/issda [Accessed: 08-Oct-2021]
  92. HeffernanO. The third industrial revolution: How lateral power is transforming energy the economy and the world.Nat. Clim. Chang.201222676810.1038/nclimate1391
    [Google Scholar]
  93. WangK. LiH. FengY. Big data analytics for system stability evaluation strategy in the energy Internet.IEEE Trans. Industr. Inform.20171341969197810.1109/TII.2017.2692775
    [Google Scholar]
  94. ZhaoF. SunB. ZhangC. Cooling heating and electrical load forecasting method for CCHP system based on multivariate phase space reconstruction and Kalman filter.Zhongguo Dianji Gongcheng Xuebao2016362399406
    [Google Scholar]
  95. WangY. ChenQ. SunM. KangC. XiaQ. An ensemble forecasting method for the aggregated load with subprofiles.IEEE Trans. Smart Grid2018943906390810.1109/TSG.2018.2807985
    [Google Scholar]
  96. LuQ. CaiQ. LiuS. YangY. YanB. WangY. Short-term load forecasting based on load decomposition and numerical weather forecastIEEE Conference on Energy Internet and Energy System Integration (EI2) 201715
    [Google Scholar]
  97. ZhangJ. WangY. SunM. ZhangN. KangC. “Constructing probabilistic load forecast from multiple point forecasts: a bootstrap based approach”, IEEE Innovative Smart Grid Technologies - Asia.ISGT Asia2018184189
    [Google Scholar]
  98. ShiJ. TanT. GuoJ. LiuY. ZhangJ. Multi-Task learning based on deep architecture for various types of load forecasting in regional energy system integration.Power System Technology. China201842698706
    [Google Scholar]
  99. ChanS.C. TsuiK.M. WuH.C. Load/Price forecasting and managing demand response for smart grids: Methodologies and challenges.IEEE Signal Process. Mag.2012295688510.1109/MSP.2012.2186531
    [Google Scholar]
  100. ChengY. ZhaiN. Electricity price peak and valley periods division based on customer response.Automation of Electric Power Systems. China20123694246
    [Google Scholar]
  101. ZhangZ. YuD. RBF-NN based short-term load forecasting model considering comprehensive factors affecting demand response.Zhongguo Dianji Gongcheng Xuebao201838616311638
    [Google Scholar]
  102. JondriR. RismalaR. Prediction of multi-currency exchange rates using correlation analysis and backpropagationInternational Conference on ICT For Smart Society (ICISS)20166368
    [Google Scholar]
  103. ZhangP. ZhouX. PelliccioneP. LeungH. RBF-MLMR: A multi-label metamorphic relation prediction approach using RBF neural network.IEEE Access20175217912180510.1109/ACCESS.2017.2758790
    [Google Scholar]
  104. YeG. LiW. WanH. Study of RBF neural network based on PSO algorithm in nonlinear system identification8th International Conference on Intelligent Computation Technology and Automation (ICICTA)2015852855
    [Google Scholar]
  105. WiyadaB. SiraphopT. Minimizing path loss prediction error using k-means clustering and fuzzy logic.Turk. J. Electr. Eng. Comput. Sci.20182641989200210.3906/elk‑1710‑104
    [Google Scholar]
/content/journals/cae/10.2174/2405463104666210427112311
Loading
/content/journals/cae/10.2174/2405463104666210427112311
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): commodity inflation; diesel prices; Fuel prices; gasoline prices; inflation; price growth
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test