Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Introduction

Agricultural chemicals are impacting health nowadays. Recently, promising synergistic antifungal interaction between tacrolimus and some azole compounds was studied.

Objective

To determine ADME parameters, potential side effects of test substances to reduce time and resources in the future.

Methods

All descriptors and molecular parameters were obtained by the protocols ofSwissADME and ProTox II.

Results

In the result, the following physicochemical and drug-likeness parameters were calculated.

Conclusion

Studied triazoles 1 and 2 showed good ADME characteristics and promising toxicity levels suitable to be checked for toxicology in case of future advanced results in theagricultural field.

Loading

Article metrics loading...

/content/journals/cad/10.2174/1573409919666230228122259
2024-01-01
2025-05-24
Loading full text...

Full text loading...

References

  1. BergerS. El ChazliY. BabuA.F. CosteA.T. Azole resistance in aspergillus fumigatus: a consequence of antifungal use in agriculture?Front. Microbiol.20178102410.3389/fmicb.2017.0102428638374
    [Google Scholar]
  2. AntypenkoL. MeyerF. SadykovaZ. ShabelnykK. KovalenkoS. SteffensK.G. GarbeL-A. Combined application of tacrolimus with cyproconazole, hymexazol and novel {2-(3-R-1H-1,2,4-triazol-5-yl)phenyl}amines as antifungals: in vitro growth inhibition and in silico molecular docking analysis to fungal chitin deacetylase.J. Fungi2023917910.3390/jof901007936675900
    [Google Scholar]
  3. LiuY. AhmedS. FangY. ChenM. AnJ. YangG. HouX. LuJ. YeQ. ZhuR. LiuQ. LiuS. Discovery of chitin deacetylase inhibitors through structure-based virtual screening and biological assays.J. Microbiol. Biotechnol.202232450451310.4014/jmb.2201.0100935131956
    [Google Scholar]
  4. CedergreenN. Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology.PLoS One201495e9658010.1371/journal.pone.009658024794244
    [Google Scholar]
  5. SwissADMESwiss Institute of Bioinformatics.2022Available from: http://www.swissadme.ch/index.php#
    [Google Scholar]
  6. DainaA. MichielinO. ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  7. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubilityand permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  8. GhoseA.K. ViswanadhanV.N. WendoloskiJ.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases.J. Comb. Chem.199911556810.1021/cc980007110746014
    [Google Scholar]
  9. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n12036371
    [Google Scholar]
  10. EganW.J. MerzK.M.Jr BaldwinJ.J. Prediction of drug absorption using multivariate statistics.J. Med. Chem.200043213867387710.1021/jm000292e11052792
    [Google Scholar]
  11. MueggeI. HealdS.L. BrittelliD. Simple selection criteria for drug-like chemical matter.J. Med. Chem.200144121841184610.1021/jm015507e11384230
    [Google Scholar]
  12. MartinY.C. A bioavailability score.J. Med. Chem.20054893164317010.1021/jm049200215857122
    [Google Scholar]
  13. LoveringF. BikkerJ. HumbletC. Escape from flatland: increasing saturation as an approach to improving clinical success.J. Med. Chem.200952216752675610.1021/jm901241e19827778
    [Google Scholar]
  14. LeeM.S. FeigM. SalsburyF.R.Jr BrooksC.L. III New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations.J. Comput. Chem.200324111348135610.1002/jcc.1027212827676
    [Google Scholar]
  15. DainaA. MichielinO. ZoeteV. iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach.J. Chem. Inf. Model.201454123284330110.1021/ci500467k25382374
    [Google Scholar]
  16. MoriguchiI. HironoS. LiuQ. NakagomeI. MatsushitaY. Simple method of calculating octanol/water partition coefficient.Chem. Pharm. Bull.199240112713010.1248/cpb.40.127
    [Google Scholar]
  17. ChengT. ZhaoY. LiX. LinF. XuY. ZhangX. LiY. WangR. LaiL. Computation of octanol-water partition coefficients by guiding an additive model with knowledge.J. Chem. Inf. Model.20074762140214810.1021/ci700257y17985865
    [Google Scholar]
  18. DelaneyJ.S. ESOL: estimating aqueous solubility directly from molecular structure.J. Chem. Inf. Comput. Sci.20044431000100510.1021/ci034243x15154768
    [Google Scholar]
  19. AliJ. CamilleriP. BrownM.B. HuttA.J. KirtonS.B. Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area.J. Chem. Inf. Model.201252242042810.1021/ci200387c22196228
    [Google Scholar]
  20. ZhangA.Y. CampW.L. ElewskiB.E. Advances in topical and systemic antifungals.Dermatol. Clin.2007252165183vi.10.1016/j.det.2007.01.00217430754
    [Google Scholar]
  21. KaurI.P. KakkarS. Topical delivery of antifungal agents.Expert Opin. Drug Deliv.20107111303132710.1517/17425247.2010.52523020961206
    [Google Scholar]
  22. GűngőrS. ErdalM.S. AksuB. New formulation strategies in topical antifungal therapy.J. Cosm. Dermatol. Sci. Appl201335665
    [Google Scholar]
  23. RitchieT.J. ErtlP. LewisR. The graphical representation of ADME-related molecule properties for medicinal chemists.Drug Discov. Today2011161-2657210.1016/j.drudis.2010.11.00221074634
    [Google Scholar]
  24. PottsR.O. GuyR.H. Predicting skin permeability.Pharm. Res.19929566366910.1023/A:10158103124651608900
    [Google Scholar]
  25. MontanariF. EckerG.F. Prediction of drug–ABC-transporter interaction-recent advances and future challenges.Adv. Drug Deliv. Rev.201586172610.1016/j.addr.2015.03.00125769815
    [Google Scholar]
  26. SzakácsG. VáradiA. Özvegy-LaczkaC. SarkadiB. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME–Tox).Drug Discov. Today2008139-1037939310.1016/j.drudis.2007.12.01018468555
    [Google Scholar]
  27. SaadA.H. DePestelD.D. CarverP.L. Factors influencing the magnitude and clinical significance of drug interactions between azole antifungals and select immunosuppressants.Pharmacotherapy200626121730174410.1592/phco.26.12.173017125435
    [Google Scholar]
  28. TaviraB. GómezJ. Díaz-CorteC. CoronelD. Lopez-LarreaC. SuarezB. CotoE. The donor ABCB1 (MDR-1) C3435T polymorphism is a determinant of the graft glomerular filtration rate among tacrolimus treated kidney transplanted patients.J. Hum. Genet.201560527327610.1038/jhg.2015.1225673014
    [Google Scholar]
  29. Piletta-ZaninA. De MulA. RockN. LescuyerP. SamerC.F. RodieuxF. Case Report: Low hematocrit leading to tacrolimus toxicity.Front. Pharmacol.20211271714810.3389/fphar.2021.71714834483924
    [Google Scholar]
  30. DiL. The role of drug metabolizing enzymes in clearance.Expert Opin. Drug Metab. Toxicol.201410337939310.1517/17425255.2014.87600624392841
    [Google Scholar]
  31. Oral toxicity prediction results for input compound.2022Available from: https://tox-new.charite.de/protox_II/index.php?site=compound_input
  32. BaellJ.B. HollowayG.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays.J. Med. Chem.20105372719274010.1021/jm901137j20131845
    [Google Scholar]
  33. BrenkR. SchipaniA. JamesD. KrasowskiA. GilbertI.H. FrearsonJ. WyattP.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases.ChemMedChem20083343544410.1002/cmdc.20070013918064617
    [Google Scholar]
  34. DainaA. ZoeteV. A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules.ChemMedChem201611111117112110.1002/cmdc.20160018227218427
    [Google Scholar]
/content/journals/cad/10.2174/1573409919666230228122259
Loading
/content/journals/cad/10.2174/1573409919666230228122259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test