Skip to content
2000
Volume 18, Issue 2
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background: The fragment-to-fragment approach for the estimation of the biological affinity of the pharmacophores with biologically active molecules has been proposed. It is the next step in the elaboration of molecular docking and using the quantum-chemical methods for the complex modeling of pharmacophores with biomolecule fragments. Methods: The parameter φ 0 was used to estimate the contribution of π-electron interactions in biological affinity. It is directly related to the position of the frontier levels and reflects the donor-acceptor properties of the pharmacophores and stabilization energy of the [Pharm158;‰BioM] complex Results: By using quantum-chemical calculations, it was found that the stacking interaction of oxazoles with phenylalanine is 7-11 kcal/mol, while the energy of hydrogen bonding of oxazoles with the amino group of lysine is 5-9 kcal/mol. The fragment-to-fragment approach can be applied for the investigation of the dependence of biological affinity on the electronic structure of pharmacophores.c Conclusion: The founded quantum-chemical regularities are confirmed with the structure-activity relationships of substituted oxazoles.

Loading

Article metrics loading...

/content/journals/cad/10.2174/1573409918666220404100022
2022-04-01
2025-05-23
Loading full text...

Full text loading...

/content/journals/cad/10.2174/1573409918666220404100022
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test