Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background: Prediction of drug-target interactions is an essential step in drug discovery. Given drug-target interactions network, the objective of this task is to predict probable missing edges from known interactions. Computationally predicting drug-target interactions is an appropriate alternative for the time-consuming and costly experimental process of drug-target interaction prediction. A large number of computational methods for solving this problem have been proposed in recent years. Objective: In recent years, several review articles have been published in the field of drug-target interactions prediction. Compared to other review articles, this paper includes a qualitative analysis in the form of a framework, a drug-target interactions prediction (DTIP) framework. Methods: The framework consists of three sections. Initially, a classification has been presented for drug-target interactions prediction methods based on the link prediction approaches used in these methods. Secondly, general evaluation criteria have been introduced for analyzing approaches. Finally, a qualitative comparison is made between each approach in terms of their advantages and disadvantages. Results: By providing a new classification of the drug-target interactions prediction approaches and comparing them with the proposed evaluation criteria, this framework provides a convenient and efficient way to select and compare the methods. Moreover, using the framework, we can improve these techniques further. Conclusion: This paper provides a study to select, compare, and improve chemogenomic drugtarget interactions prediction methods. To this aim, an analytical framework is presented.

Loading

Article metrics loading...

/content/journals/cad/10.2174/1573409916666191218124520
2021-02-01
2025-05-24
Loading full text...

Full text loading...

/content/journals/cad/10.2174/1573409916666191218124520
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test