Skip to content
2000
Volume 16, Issue 2
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background: The catecholamines such as dopamine, norepinephrine, and epinephrine are neurotransmitters that regulate different physiological functions of the central nervous system. Some evidence suggests that the degeneration of dopamine neurons in the substantia nigra contributes to Parkinson’s Disease (PD), which is a neurodegenerative disorder and it is responsible for the major symptoms of PD. It is suggested that replenishment of striatal dopamine through the oral administration of the dopamine precursor, levodopa, can compensate for the lack of endogenously produced dopamine. Some studies have shown competitive inhibition of dopamine receptor such as methamphetamine, and other amphetamine-related derivatives, which block dopamine receptor activity to uptake dopamine. Methods: In this study, 3D structures of amphetamine, methamphetamine, cocaine, methylphenidate, cathinone, MDMA, and mephedrone were obtained from the PubChem database, which has reported some evidence about their inhibitory effect with dopamine receptor. Then, these structures were provided for molecular docking analysis by Autodock Vina software. Eventually, the binding energies between docked dopamine receptor and them were calculated and their interactions were prognosticated. Results: Our results indicated that all chemicals can interact with dopamine receptor molecule in the active site of dopamine and the minimum binding energies belong to Cocaine and Methylphenidate with -7.9 Kcal/mol and -7.2 Kcal/mol, respectively. Conclusion: It might be concluded that amphetamine, methamphetamine, cocaine, methylphenidate, cathinone, MDMA, and mephedrone could act as potential inhibitors of DA receptor for dopamine uptake, which could cause degenerative disorders.

Loading

Article metrics loading...

/content/journals/cad/10.2174/1573409915666181204144411
2020-04-01
2025-05-06
Loading full text...

Full text loading...

/content/journals/cad/10.2174/1573409915666181204144411
Loading

  • Article Type:
    Research Article
Keyword(s): amphetamine; Autodock Vina; cocaine; DA receptor; inhibitor; methamphetamine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test