Skip to content
2000
Volume 14, Issue 4
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background: Inhibition of penicillin binding protein 2A (PBP2A) represents a sound drug design strategy in combatting Methicillin resistant Staphylococcus aureus (MRSA). Considering the urgent need for effective antimicrobials in combatting MRSA infections, we have developed a statistically robust ensemble of molecular descriptors (1, 2, & 3-D) from compounds targeting PBP2A in vivo. Methods: 37 (training set: 26, test set: 11) PBP2A-inhibitors were submitted for descriptor generation after which an unsupervised, non-exhaustive genetic algorithm (GA) was deployed for fishing out the best descriptor subset. Assignment of descriptors to a regression model was accomplished with the Partial Least Square (PLS) algorithm. At the end, an ensemble of 30 descriptors accurately predicted the ligand bioactivity, IC50 (R = 0.9996, R2 = 0.9992, R2 a = 0.9949, SEE =, 0.2297 Q2 LOO = 0.9741). Results and Conclusion: Inferentially, we noticed that the overall efficacy of this model greatly depends on atomic polarizability and negative charge (electron) density. Besides the formula derived, the high dimensional model also offers critical insights into salient cheminformatics parameter to note during hit-to-lead PBP2A-antagonist optimization.

Loading

Article metrics loading...

/content/journals/cad/10.2174/1573409914666180516114314
2018-10-01
2025-05-09
Loading full text...

Full text loading...

/content/journals/cad/10.2174/1573409914666180516114314
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test