Skip to content
2000
Volume 11, Issue 3
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

The activation of tumor suppressor p53 protein through inhibition of its interaction with the oncogenic Murine Double Minute 2 (MDM2) protein presents a novel therapeutic strategy against cancer. Accordingly, several small-molecule inhibitors have been developed that mimic three hydrophobic groups of p53 involved in p53-MDM2 binding and thus block the p53-binding pocket on MDM2. Interestingly, presence of a fourth, solvent-exposed hydrophilic moiety in these MDM2 inhibitors is shown to enhance their binding to MDM2 by protecting the inhibitor-MDM2 binding interface from surrounding solvent. In this context, we hypothesized that vitamin folic acid (FA) may prove to be suitable as the hydrophilic cover for enhancing activity of present MDM2 inhibitors. The proposed conjugation of FA to MDM2 inhibitors may also lead to their enhanced and selective uptake by cancer cells, owing to significantly higher expression of the FA receptors on cancer cells compared to normal cells. Therefore, based on our novel hypothesis we designed FA-conjugated MDM2 inhibitors and investigated their binding with MDM2 protein as well as the FA receptor. Specifically, a molecular modeling approach combining flexible receptor docking and molecular mechanics energy minimization calculations revealed highly favorable interactions of FA-conjugated MDM2 inhibitors with both MDM2 protein and the FA receptor as compared to native crystal ligands. Furthermore, these binding interactions were found to be stable using 50,000 ps molecular dynamics simulations. In summary, the newly-designed molecules of this kind, with better MDM2 target binding and enhanced cellular uptake potential, may prove highly useful against cancer and thus warrant further experimental investigations.

Loading

Article metrics loading...

/content/journals/cad/10.2174/1573409911666150812141216
2015-09-01
2025-06-14
Loading full text...

Full text loading...

/content/journals/cad/10.2174/1573409911666150812141216
Loading

  • Article Type:
    Research Article
Keyword(s): Folic acid; induced-fit docking; MDM2; molecular dynamics; molecular mechanics; p53
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test