Skip to content
2000
image of Designing and Evaluation of a Novel IL-1RA Fusion Cytokine to Enhance the Pharmacokinetics and Receptor Affinity for Better Therapeutic Intervention in Inflammatory Disorders

Abstract

Introduction

The extended IL-1 activity is implicated in autoimmune disorders, such as rheumatoid arthritis, diabetes mellitus, and Parkinson's disease, as well as delayed wound healing. Additionally, it can result in cytokine storms during pathogenic infections.

Methods

The regulation was carried out by Interleukin-1 receptor antagonist (IL-1RA), a key anti-inflammatory molecule. IL-1RA serves as a decoy protein that competes with Interleukin-1 receptors (IL-1RI and IL-1RII) for binding, effectively counteracting the activity of Interleukin-1 (IL-1). The deficiency was substantiated by commercially available recombinant IL-1RA called Anakinra. The main problem with the existing drug is that it has less pharmacokinetics and reduced binding affinity to its receptor, which requires frequent administration of the drug. To overcome these drawbacks, we have designed a new fusion protein by adding an Fc fragment of Human IgGI fused with IL-1RA using a linker in between, and the design aimed to transport the protein into the N-glycosylation pathway. These characteristic features increase the pharmacokinetics, solubility, and binding efficiency of the protein. As the protein was designed to be expressed in a eukaryotic system, to understand the possibility of the proposed hypothesis, we used machine learning-based AlphaFold2 to model the protein structure and molecular simulation studies to understand the functional integrity of the designed protein.

Results

The results showed that the modeled fusion protein structure has very good binding to its receptor with the support of 21 H bonds and 7 salt bridges and maintained the binding stability over the MD simulations.

Conclusion

These findings support fusion protein’s potential as a promising and stable therapeutic candidate.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099352664250225041948
2025-03-05
2025-05-11
Loading full text...

Full text loading...

References

  1. Pahwa R. Goyal A. Jialal I. Chronic inflammation. StatPearls. StatPearls Publishing 2023
    [Google Scholar]
  2. Cacciapaglia F. Spinelli F.R. Bartoloni E. Bugatti S. Erre G.L. Fornaro M. Manfredi A. Piga M. Sakellariou G. Viapiana O. Atzeni F. Gremese E. Clinical features of diabetes mellitus on rheumatoid arthritis: Data from the cardiovascular obesity and rheumatic disease (CORDIS) study group. J. Clin. Med. 2023 12 6 2148 10.3390/jcm12062148 36983150
    [Google Scholar]
  3. Liu C. Chen H. Liu Y. Huang H. Yu W. Du T. Long X. Chen X. Chen Z. Guo S. Li J. Jiang Z. Wang L. Lu C. Immunity: Psoriasis comorbid with atherosclerosis. Front. Immunol. 2022 13 1070750 10.3389/fimmu.2022.1070750 36591241
    [Google Scholar]
  4. Kaneko N. Kurata M. Yamamoto T. Morikawa S. Masumoto J. The role of interleukin-1 in general pathology. Inflamm. Regen. 2019 39 1 12 10.1186/s41232‑019‑0101‑5 31182982
    [Google Scholar]
  5. Luís J.P. Simões C.J.V. Brito R.M.M. The therapeutic prospects of targeting IL-1R1 for the modulation of neuroinflammation in central nervous system disorders. Int. J. Mol. Sci. 2022 23 3 1731 10.3390/ijms23031731 35163653
    [Google Scholar]
  6. Dinarello C.A. Simon A. van der Meer J.W.M. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 2012 11 8 633 652 10.1038/nrd3800 22850787
    [Google Scholar]
  7. Cavalli G. Dinarello C.A. Anakinra therapy for non-cancer inflammatory diseases. Front. Pharmacol. 2018 9 1157 10.3389/fphar.2018.01157 30459597
    [Google Scholar]
  8. Nouri Barkestani M. Naserian S. Khoddam F. Shamdani S. Bambai B. Optimization of IL-1RA structure to achieve a smaller protein with a higher affinity to its receptor. Sci. Rep. 2022 12 1 7483 10.1038/s41598‑022‑11100‑3 35523814
    [Google Scholar]
  9. Mahmoudi Azar L. Karaman E. Beyaz B. Göktan I. Eyüpoğlu A.E. Kizilel S. Erman B. Gül A. Uysal S. Expression and characterization of recombinant IL-1Ra in Aspergillus oryzae as a system. BMC Biotechnol. 2023 23 1 15 10.1186/s12896‑023‑00785‑7 37340430
    [Google Scholar]
  10. Siriwattananon K. Manopwisedjaroen S. Kanjanasirirat P. Budi Purwono P. Rattanapisit K. Shanmugaraj B. Smith D.R. Borwornpinyo S. Thitithanyanont A. Phoolcharoen W. Development of plant-produced recombinant ACE2-Fc fusion protein as a potential therapeutic agent against SARS-CoV-2. Front. Plant Sci. 2021 11 604663 10.3389/fpls.2020.604663 33584747
    [Google Scholar]
  11. Foss S. Sakya S.A. Aguinagalde L. Lustig M. Shaughnessy J. Cruz A.R. Scheepmaker L. Mathiesen L. Ruso-Julve F. Anthi A.K. Gjølberg T.T. Mester S. Bern M. Evers M. Bratlie D.B. Michaelsen T.E. Schlothauer T. Sok D. Bhattacharya J. Leusen J. Valerius T. Ram S. Rooijakkers S.H.M. Sandlie I. Andersen J.T. Human IgG Fc-engineering for enhanced plasma half-life, mucosal distribution and killing of cancer cells and bacteria. Nat. Commun. 2024 15 1 2007 10.1038/s41467‑024‑46321‑9 38453922
    [Google Scholar]
  12. Czajkowsky D.M. Hu J. Shao Z. Pleass R.J. Fc‐fusion proteins: New developments and future perspectives. EMBO Mol. Med. 2012 4 10 1015 1028 10.1002/emmm.201201379 22837174
    [Google Scholar]
  13. Zhao Y. Wang H. Jin L. Zhang Z. Liu L. Zhou M. Zhang X. Zhang L. Targeting fusion proteins of the interleukin family: A promising new strategy for the treatment of autoinflammatory diseases. Eur. J. Pharm. Sci. 2024 192 106647
    [Google Scholar]
  14. Roopenian D.C. Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 2007 7 9 715 725 10.1038/nri2155 17703228
    [Google Scholar]
  15. Xiong Y. Karuppanan K. Bernardi A. Li Q. Kommineni V. Dandekar A.M. Lebrilla C.B. Faller R. McDonald K.A. Nandi S. Effects of N-glycosylation on the structure, function, and stability of a plant-made fc-fusion anthrax decoy protein. Front. Plant Sci. 2019 10 768 10.3389/fpls.2019.00768 31316527
    [Google Scholar]
  16. Shamriz S. Ofoghi H. Design, structure prediction and molecular dynamics simulation of a fusion construct containing malaria pre-erythrocytic vaccine candidate, PfCelTOS, and human interleukin 2 as adjuvant. BMC Bioinformatics 2016 17 1 71 10.1186/s12859‑016‑0918‑8 26851942
    [Google Scholar]
  17. Ponstingl H. Hilschmann N. The rule of antibody structure. The primary structure of a monoclonal IgG1 immunoglobulin (myeloma protein Nie). III. The chymotryptic peptides of the H-chain, alignment of the tryptic peptides and discussion of the complete structure. Hoppe Seylers Z. Physiol. Chem. 1976 357 11 1571 1604
    [Google Scholar]
  18. Carter D.B. Deibel M.R. Jr Dunn C.J. Tomich C.S.C. Laborde A.L. Slightom J.L. Berger A.E. Bienkowski M.J. Sun F.F. McEwan R.N. Harris P.K.W. Yem A.W. Waszak G.A. Chosay J.G. Sieu L.C. Hardee M.M. Zurcher-Neely H.A. Reardon I.M. Heinrikson R.L. Truesdell S.E. Shelly J.A. Eessalu T.E. Taylor B.M. Tracey D.E. Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Nature 1990 344 6267 633 638 10.1038/344633a0 2139180
    [Google Scholar]
  19. Ellison J. Hood L. Linkage and sequence homology of two human immunoglobulin gamma heavy chain constant region genes. Proc. Natl. Acad. Sci. U.S.A. 1982 Mar 79 6 1984 1988 10.1073/pnas.79.6.1984
    [Google Scholar]
  20. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  21. Yang Z. Zeng X. Zhao Y. Chen R. AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduct. Target. Ther. 2023 8 1 115 10.1038/s41392‑023‑01381‑z 36918529
    [Google Scholar]
  22. Hasan R. Rony M.N.H. Ahmed R. In silico characterization and structural modeling of bacterial metalloprotease of family M4. J. Genet. Eng. Biotechnol. 2021 19 1 25 10.1186/s43141‑020‑00105‑y 33528696
    [Google Scholar]
  23. Kolbeck B. May P. Schmidt-Goenner T. Steinke T. Knapp E.W. Connectivity independent protein-structure alignment: A hierarchical approach. BMC Bioinformatics 2006 7 1 510 10.1186/1471‑2105‑7‑510 17118190
    [Google Scholar]
  24. Varadi M. Anyango S. Deshpande M. Nair S. Natassia C. Yordanova G. Yuan D. Stroe O. Wood G. Laydon A. Žídek A. Green T. Tunyasuvunakool K. Petersen S. Jumper J. Clancy E. Green R. Vora A. Lutfi M. Figurnov M. Cowie A. Hobbs N. Kohli P. Kleywegt G. Birney E. Hassabis D. Velankar S. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022 50 D1 D439 D444 10.1093/nar/gkab1061 34791371
    [Google Scholar]
  25. Zeng W. Ford K.L. Bacic A. Heazlewood J.L. N-linked glycan micro-heterogeneity in glycoproteins of arabidopsis. Mol. Cell. Proteomics 2018 17 3 413 421 10.1074/mcp.RA117.000165 29237727
    [Google Scholar]
  26. Singh A. Montgomery D. Xue X. Foley B.L. Woods R.J. GAG Builder: A web-tool for modeling 3D structures of glycosaminoglycans. Glycobiology 2019 29 7 515 518 10.1093/glycob/cwz027 31034567
    [Google Scholar]
  27. Mathieu-Rivet E. Kiefer-Meyer M.C. Vanier G. Ovide C. Burel C. Lerouge P. Bardor M. Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals. Front. Plant Sci. 2014 5 359 10.3389/fpls.2014.00359 25183966
    [Google Scholar]
  28. Mellquist J.L. Kasturi L. Spitalnik S.L. Shakin-Eshleman S.H. The amino acid following an asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency. Biochemistry 1998 37 19 6833 6837 10.1021/bi972217k 9578569
    [Google Scholar]
  29. Kayser V. Chennamsetty N. Voynov V. Forrer K. Helk B. Trout B.L. Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies. Biotechnol. J. 2011 6 1 38 44 10.1002/biot.201000091 20949542
    [Google Scholar]
  30. Vigers G.P.A. Anderson L.J. Caffes P. Brandhuber B.J. Crystal structure of the type-I interleukin-1 receptor complexed with interleukin-1β. Nature 1997 386 6621 190 194 10.1038/386190a0 9062193
    [Google Scholar]
  31. Kozakov D. Hall D.R. Xia B. Porter K.A. Padhorny D. Yueh C. Beglov D. Vajda S. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017 12 2 255 278 10.1038/nprot.2016.169 28079879
    [Google Scholar]
  32. Desta I.T. Porter K.A. Xia B. Kozakov D. Vajda S. Performance and its limits in rigid body protein-protein docking. Structure 2020 28 9 1071 1081.e3 10.1016/j.str.2020.06.006 32649857
    [Google Scholar]
  33. Skariyachan S. Praveen P.K.U. Uttarkar A. Niranjan V. Computational design of prospective molecular targets for Burkholderia cepacia complex by molecular docking and dynamic simulation studies. Proteins 2023 91 6 724 738 10.1002/prot.26462 36601892
    [Google Scholar]
  34. Laskowski R.A. PDBsum1: A standalone program for generating PDBsum analyses. Protein Sci. 2022 31 e4473
    [Google Scholar]
  35. Xiong B. Fan M. Wang Z. Yang X. Cao S. Shen J. Fan B. Gentiopicroside-induced gastric cancer necroptosis via the HIF-1 signaling pathway: A study involving molecular docking and experimental validation. PLoS One 2024 19 11 e0311152 10.1371/journal.pone.0311152 39570876
    [Google Scholar]
  36. Chen H. Zhou C. Li W. Bian Y. Mechanism of Polygala-acorus in treating autism spectrum disorder based on network pharmacology and molecular docking. Curr. Computeraided Drug Des. 2024 20 7 1087 1099 10.2174/0115734099266308231108112058 39354858
    [Google Scholar]
  37. Park S.J. Lee J. Qi Y. Kern N.R. Lee H.S. Jo S. Joung I. Joo K. Lee J. CHARMM-GUI glycan modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology 2019 29 4 320 331 10.1093/glycob/cwz003
    [Google Scholar]
  38. Huang J. Rauscher S. Nawrocki G. Ran T. Feig M. de Groot B.L. Grubmüller H. MacKerell A.D. Jr CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017 14 1 71 73 10.1038/nmeth.4067 27819658
    [Google Scholar]
  39. Pai R. Sirigiri D.R. Malempati R. Vinjamuri S. Computational investigation of naturally occurring anticancer agents in regulating Hedgehog pathway proteins. PLoS One 2024 19 12 e0311307 10.1371/journal.pone.0311307 39625914
    [Google Scholar]
  40. Hamed M. Khalifa M. El Hassab M.A. Abourehab M.A.S. Al Kamaly O. Alanazi A.S. Eldehna W.M. Mansour F.R. The potential roles of Ficus carica extract in the management of covid-19 viral infections: A computer-aided drug design study. Curr. Computeraided Drug Des. 2024 20 6 974 986 10.2174/1573409920666230818092445 37594095
    [Google Scholar]
  41. Juárez-Mercado K.E. Gómez-Hernández M.A. Salinas-Trujano J. Córdova-Bahena L. Espitia C. Pérez-Tapia S.M. Medina-Franco J.L. Velasco-Velázquez M.A. Identification of SARS-CoV-2 main protease inhibitors using chemical similarity analysis combined with machine learning. Pharmaceuticals 2024 17 2 240 10.3390/ph17020240 38399455
    [Google Scholar]
  42. Wacha A.F. Lemkul J.A. charmm2gmx: An automated method to port the CHARMM additive force field to GROMACS. J. Chem. Inf. Model. 2023 63 14 4246 4252 10.1021/acs.jcim.3c00860 37399236
    [Google Scholar]
  43. Wu Y. Tepper H.L. Voth G.A. Flexible simple point-charge water model with improved liquid-state properties. J. Chem. Phys. 2006 124 2 024503 10.1063/1.2136877 16422607
    [Google Scholar]
  44. Gangadharappa B.S. Sharath R. Revanasiddappa P.D. Chandramohan V. Balasubramaniam M. Vardhineni T.P. Structural insights of metallo-beta-lactamase revealed an effective way of inhibition of enzyme by natural inhibitors. J. Biomol. Struct. Dyn. 2020 38 13 3757 3771 10.1080/07391102.2019.1667265 31514687
    [Google Scholar]
  45. Ghahremanian S. Rashidi M.M. Raeisi K. Toghraie D. Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: A structural review. J. Mol. Liq. 2022 354 118901 10.1016/j.molliq.2022.118901 35309259
    [Google Scholar]
  46. Kumari R. Kumar R. Lynn A. Open Source Drug Discovery Consortium g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014 54 7 1951 1962 10.1021/ci500020m 24850022
    [Google Scholar]
  47. Huang L.F. Sinaga D.S. Tan C.C. Hsieh S.J.M. Huang C.H. Expression of recombinant human octamer-binding transcription factor 4 in rice suspension cells. Int. J. Mol. Sci. 2021 22 3 1409 10.3390/ijms22031409 33573352
    [Google Scholar]
  48. Avilan L. Assembling multiple fragments: The gibson assembly. Methods Mol. Biol. 2023 2633 45 53 10.1007/978‑1‑0716‑3004‑4_4 36853455
    [Google Scholar]
  49. Shiryaev V. Klimochkin Y. Computer-aided design of wide-spectrum coronavirus helicase NSP13 cage inhibitors: A molecular modelling approach. Curr. Computeraided Drug Des. 2024 20 7 1027 1041 10.2174/0115734099247900231016055626 37921184
    [Google Scholar]
  50. Salo-Ahen O.M.H. Alanko I. Bhadane R. Bonvin A.M.J.J. Honorato R.V. Hossain S. Juffer A.H. Kabedev A. Lahtela-Kakkonen M. Larsen A.S. Lescrinier E. Marimuthu P. Mirza M.U. Mustafa G. Nunes-Alves A. Pantsar T. Saadabadi A. Singaravelu K. Vanmeert M. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 2020 9 1 71 10.3390/pr9010071
    [Google Scholar]
  51. Aier I. Varadwaj P.K. Raj U. Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Sci. Rep. 2016 6 1 34984 10.1038/srep34984 27713574
    [Google Scholar]
  52. Hashemzadeh H. Javadi H. Darvishi M.H. Study of structural stability and formation mechanisms in DSPC and DPSM liposomes: A coarse-grained molecular dynamics simulation. Sci. Rep. 2020 10 1 1837 10.1038/s41598‑020‑58730‑z 32020000
    [Google Scholar]
  53. Svilenov H.L. Delhommel F. Siebenmorgen T. Rührnößl F. Popowicz G.M. Reiter A. Sattler M. Brockmeyer C. Buchner J. Extrinsic stabilization of antiviral ACE2-Fc fusion proteins targeting SARS-CoV-2. Commun. Biol. 2023 6 1 386 10.1038/s42003‑023‑04762‑w 37031320
    [Google Scholar]
  54. Parida P.K. Paul D. Chakravorty D. The natural way forward: Molecular dynamics simulation analysis of phytochemicals from Indian medicinal plants as potential inhibitors of SARS‐CoV ‐2 targets. Phytother. Res. 2020 34 12 3420 3433 10.1002/ptr.6868 32969524
    [Google Scholar]
  55. Savojardo C. Manfredi M. Martelli P.L. Casadio R. Solvent accessibility of residues undergoing pathogenic variations in humans: From protein structures to protein sequences. Front. Mol. Biosci. 2021 7 626363 10.3389/fmolb.2020.626363 33490109
    [Google Scholar]
  56. Wang E. Sun H. Wang J. Wang Z. Liu H. Zhang J.Z.H. Hou T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev. 2019 119 16 9478 9508 10.1021/acs.chemrev.9b00055 31244000
    [Google Scholar]
  57. Tomoiaga D. Bubnell J. Herndon L. Feinstein P. High rates of plasmid cotransformation in E. coli overturn the clonality myth and reveal colony development. Sci. Rep. 2022 12 1 11515 10.1038/s41598‑022‑14598‑9 35798773
    [Google Scholar]
  58. Ajeganova S. De Becker A. Schots R. Efficacy of high-dose anakinra in refractory macrophage activation syndrome in adult-onset still’s disease: When dosage matters in overcoming secondary therapy resistance. Therapeutic Adv. Musculoskelet. Dis. 2020 12 1759720X20974858
    [Google Scholar]
  59. Byrn R.A. Mordenti J. Lucas C. Smith D. Marsters S.A. Johnson J.S. Cossum P. Chamow S.M. Wurm F.M. Gregory T. Groopman J.E. Capon D.J. Biological properties of a CD4 immunoadhesin. Nature 1990 344 6267 667 670 10.1038/344667a0 1970124
    [Google Scholar]
  60. Haraoui B. Bykerk V. Etanercept in the treatment of rheumatoid arthritis. Ther. Clin. Risk Manag. 2007 3 1 99 105 10.2147/tcrm.2007.3.1.99 18360618
    [Google Scholar]
  61. Liu X. Zhao Y. Shi H. Zhang Y. Yin X. Liu M. Zhang H. He Y. Lu B. Jin T. Li F. Human immunoglobulin G hinge regulates agonistic anti-CD40 immunostimulatory and antitumour activities through biophysical flexibility. Nat. Commun. 2019 10 1 4206 10.1038/s41467‑019‑12097‑6 31562320
    [Google Scholar]
  62. Song A. Zhu L. Gorantla G. Berdysz O. Amici S.A. Guerau-de-Arellano M. Madalena K.M. Lerch J.K. Liu X. Quan N. Salient type 1 interleukin 1 receptor expression in peripheral non-immune cells. Sci. Rep. 2018 8 1 723 10.1038/s41598‑018‑19248‑7 29335509
    [Google Scholar]
  63. Ebrahimi S.B. Samanta D. Engineering protein-based therapeutics through structural and chemical design. Nat. Commun. 2023 14 1 2411 10.1038/s41467‑023‑38039‑x 37105998
    [Google Scholar]
  64. Zhou Y. Jiang S. Roles of FcRn in antigen-presenting cells during autoimmunity and a clinical evaluation of efgartigimod as an FcRn blocker. Pathogens 2023 12 6 817 10.3390/pathogens12060817 37375507
    [Google Scholar]
  65. Rath T. Baker K. Dumont J.A. Peters R.T. Jiang H. Qiao S.W. Lencer W.I. Pierce G.F. Blumberg R.S. Fc-fusion proteins and FcRn: Structural insights for longer-lasting and more effective therapeutics. Crit. Rev. Biotechnol. 2015 35 2 235 254 10.3109/07388551.2013.834293 24156398
    [Google Scholar]
  66. Asaadi Y. Jouneghani F.F. Janani S. Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark. Res. 2021 9 1 87 10.1186/s40364‑021‑00332‑6 34863296
    [Google Scholar]
  67. Hayashi Y. Miura N. Isobe J. Shinyashiki N. Yagihara S. Molecular dynamics of hinge-bending motion of IgG vanishing with hydrolysis by papain. Biophys. J. 2000 79 2 1023 1029 10.1016/S0006‑3495(00)76356‑9 10920032
    [Google Scholar]
  68. Gattinger P. Izadi S. Grünwald-Gruber C. Kallolimath S. Castilho A. The instability of dimeric Fc-fusions expressed in plants can be solved by monomeric Fc technology. Front. Plant Sci. 2021 12 671728 10.3389/fpls.2021.671728 34305971
    [Google Scholar]
  69. Marcotte H. Cao Y. Zuo F. Simonelli L. Sammartino J.C. Pedotti M. Sun R. Cassaniti I. Hagbom M. Piralla A. Yang J. Du L. Percivalle E. Bertoglio F. Schubert M. Abolhassani H. Sherina N. Guerra C. Borte S. Rezaei N. Kumagai-Braesch M. Xue Y. Su C. Yan Q. He P. Grönwall C. Klareskog L. Calzolai L. Cavalli A. Wang Q. Robbiani D.F. Hust M. Shi Z. Feng L. Svensson L. Chen L. Bao L. Baldanti F. Xiao J. Qin C. Hammarström L. Yang X. Varani L. Xie X.S. Pan-Hammarström Q. Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents infection of Omicron lineages. Proc. Natl. Acad. Sci. USA 2024 121 3 e2315354120 10.1073/pnas.2315354120 38194459
    [Google Scholar]
  70. Jayaprakash N.G. Sarkar D.K. Surolia A. Atomic visualization of flipped-back conformations of high mannose glycans interacting with cargo lectins: An MD simulation perspective. Proteins 2025 Jan 93 1 112 133 10.1002/prot.26556
    [Google Scholar]
  71. Dinarello C.A. Overview of the IL ‐1 family in innate inflammation and acquired immunity. Immunol. Rev. 2018 281 1 8 27 10.1111/imr.12621 29247995
    [Google Scholar]
  72. Mueller T.M. Meador-Woodruff J.H. Post-translational protein modifications in schizophrenia. npj. Schizophrenia 2020 6 1 16
    [Google Scholar]
  73. Krištić J. Lauc G. The importance of IgG glycosylation—What did we learn after analyzing over 100,000 individuals. Immunol. Rev. 2024 328 1 143 170 10.1111/imr.13407 39364834
    [Google Scholar]
  74. Archer E.J. Gonzalez J.C. Ghosh D. Mellins E.D. Wang T.T. Harnessing IgG Fc glycosylation for clinical benefit. Curr. Opin. Immunol. 2022 77 102231 10.1016/j.coi.2022.102231 35797920
    [Google Scholar]
  75. Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat. Rev. Drug Discov. 2009 8 3 226 234 10.1038/nrd2804 19247305
    [Google Scholar]
  76. Shanmugaraj B. Bulaon C.J. Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production. Basel, Switzerland Plants 2020 9
    [Google Scholar]
  77. Fischer R. Holland T. Sack M. Schillberg S. Stoger E. Twyman R.M. Buyel J.F. Glyco-engineering of plant-based expression systems. Advances in Glycobiotechnology. Advances in Biochemical Engineering/Biotechnology Springer Cham 2018 175 137 166
    [Google Scholar]
  78. Lee J. Lee S.K. Park J.S. Lee K.R. Plant-made pharmaceuticals: Exploring studies for the production of recombinant protein in plants and assessing challenges ahead. Plant Biotechnol. Rep. 2023 17 1 53 65 10.1007/s11816‑023‑00821‑0 36820221
    [Google Scholar]
  79. Fatriansyah J.F. Rizqillah R.K. Yandi M.Y. Fadilah Sahlan M. Molecular docking and dynamics studies on propolis sulabiroin-A as a potential inhibitor of SARS-CoV-2. J. King Saud Univ. Sci. 2022 34 1 101707 10.1016/j.jksus.2021.101707 34803333
    [Google Scholar]
  80. Mahaboob Ali A.A. Vishal A. Nelson E.J.R. Targeting host-virus interactions: In silico analysis of the binding of human milk oligosaccharides to viral proteins involved in respiratory infections. Sci. Rep. 2024 14 1 4111 10.1038/s41598‑024‑54624‑6 38374384
    [Google Scholar]
/content/journals/cad/10.2174/0115734099352664250225041948
Loading
/content/journals/cad/10.2174/0115734099352664250225041948
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test