Skip to content
2000
image of Qi-Gui-Jian-Gu Decoction Accelerates Osteogenesis and Fracture Healing by Activating the Wnt/β-Catenin Signaling Pathway

Abstract

Background

Qi-Gui-Jian-Gu decoction (QGJG), as a clinical empirical formula, has clinical benefits in promoting bone formation, but the underlying mechanism for its application in treating fractures has not been investigated.

Methods

The potential therapeutic target and signaling pathway of QGJG for treating fractures were analyzed by network pharmacology. , we used bone marrow mesenchymal stem cells (MSCs) to evaluate osteogenic differentiation and mineralization by alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), western blot (WB), and immunofluorescence staining. , the 8w male SPF C57BL/6J mouse femoral fracture model was constructed, and the therapeutic effects of QGJG were evaluated.

Results

By network pharmacology analysis, we found that glycogen synthase kinase 3 beta (GSK3β) was a potential therapeutic target of QGJG for treating fractures. The canonical Wnt signaling pathway was selected as the potential molecular mechanism. QGJG was confirmed to upregulate the mRNA levels of alkaline phosphatase (ALP) and bone morphogenetic protein 2 (BMP2), thereby promoting osteogenic differentiation and mineralization. Mechanistically, QGJG inhibited GSK3β while increasing p-Ser9-GSK3β to increase β-catenin protein expression and its nuclear translocation, implying the activation of the canonical Wnt signaling pathway. , QGJG administration promoted fracture healing, as demonstrated by the up-regulation of OPN and Osx, and accelerated the progression of ossification at 2 and 3 weeks after surgery.

Conclusion

QGJG promotes osteogenic differentiation and fracture healing by activating the canonical Wnt pathway.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099345441250121101413
2025-02-04
2025-04-19
Loading full text...

Full text loading...

References

  1. Brinker M.R. Loftis C.M. Khoriaty J.D. Dunn W.R. The devastating effects of humeral nonunion on health-related quality of life. J. Shoulder Elbow Surg. 2022 31 12 2578 2585 10.1016/j.jse.2022.05.012 35718254
    [Google Scholar]
  2. Kanakaris N.K. Giannoudis P.V. The health economics of the treatment of long-bone non-unions. Injury 2007 38 Suppl. 2 S77 S84 10.1016/S0020‑1383(07)80012‑X 17920421
    [Google Scholar]
  3. Einhorn T.A. Gerstenfeld L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol. 2015 11 1 45 54 10.1038/nrrheum.2014.164 25266456
    [Google Scholar]
  4. Du M. Zhao Q. Xu L. Potential role of natural compounds modulating bone formation by mitochondrial oxidative phosphorylation. Future Integr. Med. 2023 2 4 200 205 10.14218/FIM.2023.00046
    [Google Scholar]
  5. Xu L. Huang S. Hou Y. Liu Y. Ni M. Meng F. Wang K. Rui Y. Jiang X. Li G. Sox11‐modified mesenchymal stem cells (MSCs) accelerate bone fracture healing: Sox11 regulates differentiation and migration of MSCs. FASEB J. 2015 29 4 1143 1152 10.1096/fj.14‑254169 25466891
    [Google Scholar]
  6. Xu L. Li G. Circulating mesenchymal stem cells and their clinical implications. J. Orthop. Translat. 2014 2 1 1 7 10.1016/j.jot.2013.11.002 30035034
    [Google Scholar]
  7. Rizzo M.G. Best T.M. Huard J. Philippon M. Hornicek F. Duan Z. Griswold A.J. Kaplan L.D. Hare J.M. Kouroupis D. Therapeutic perspectives for inflammation and senescence in osteoarthritis using mesenchymal stem cells, mesenchymal stem cell-derived extracellular vesicles and senolytic agents. Cells 2023 12 10 1421 10.3390/cells12101421 37408255
    [Google Scholar]
  8. Plock J.A. Schnider J.T. Solari M.G. Zheng X.X. Gorantla V.S. Perspectives on the use of mesenchymal stem cells in vascularized composite allotransplantation. Front. Immunol. 2013 4 175 10.3389/fimmu.2013.00175 23888159
    [Google Scholar]
  9. Lelek J. Surma Z.E.K. Perspectives for Future Use of Extracellular Vesicles from Umbilical Cord- and Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells in Regenerative Therapies—Synthetic Review. Int. J. Mol. Sci. 2020 21 3 799 10.3390/ijms21030799 31991836
    [Google Scholar]
  10. Saeed H. Ahsan M. Saleem Z. Iqtedar M. Islam M. Danish Z. Khan A.M. Mesenchymal stem cells (MSCs) as skeletal therapeutics–an update. J. Biomed. Sci. 2016 23 1 41 10.1186/s12929‑016‑0254‑3 27084089
    [Google Scholar]
  11. Zhu C. Wu W. Qu X. Mesenchymal stem cells in osteoarthritis therapy: A review. Am. J. Transl. Res. 2021 13 2 448 461 33594303
    [Google Scholar]
  12. Hou Y. Lin W. Li Y. Sun Y. Liu Y. Chen C. Jiang X. Li G. Xu L. De-osteogenic-differentiated mesenchymal stem cells accelerate fracture healing by mir-92b. J. Orthop. Translat. 2021 27 25 32 10.1016/j.jot.2020.10.009 33344169
    [Google Scholar]
  13. Hu H. Hilton M.J. Tu X. Yu K. Ornitz D.M. Long F. Sequential roles of hedgehog and wnt signaling in osteoblast development. Development 2005 132 1 49 60 10.1242/dev.01564 15576404
    [Google Scholar]
  14. Ducy P. Zhang R. Geoffroy V. Ridall A.L. Karsenty G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 1997 89 5 747 754 10.1016/S0092‑8674(00)80257‑3 9182762
    [Google Scholar]
  15. Komori T. Yagi H. Nomura S. Yamaguchi A. Sasaki K. Deguchi K. Shimizu Y. Bronson R.T. Gao Y.H. Inada M. Sato M. Okamoto R. Kitamura Y. Yoshiki S. Kishimoto T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997 89 5 755 764 10.1016/S0092‑8674(00)80258‑5 9182763
    [Google Scholar]
  16. Nakashima K. Zhou X. Kunkel G. Zhang Z. Deng J.M. Behringer R.R. Crombrugghe d.B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002 108 1 17 29 10.1016/S0092‑8674(01)00622‑5 11792318
    [Google Scholar]
  17. Yang C. Wang C. Zhou J. Liang Q. He F. Li F. Li Y. Chen J. Zhang F. Han C. Liu J. Li K. Tang Y. Fibronectin 1 activates WNT/β-catenin signaling to induce osteogenic differentiation via integrin β1 interaction. Lab. Invest. 2020 100 12 1494 1502 10.1038/s41374‑020‑0451‑2 32561820
    [Google Scholar]
  18. Wang P. Wang M. Zhuo T. Li Y. Lin W. Ding L. Zhang M. Zhou C. Zhang J. Li G. Wang H. Xu L. Hydroxysafflor yellow A promotes osteogenesis and bone development via epigenetically regulating β-catenin and prevents ovariectomy-induced bone loss. Int. J. Biochem. Cell Biol. 2021 137 106033 10.1016/j.biocel.2021.106033 34216755
    [Google Scholar]
  19. Albrecht L.V. Muñoz T.N. Robertis D.E.M. Cell biology of canonical wnt signaling. Annu. Rev. Cell Dev. Biol. 2021 37 1 369 389 10.1146/annurev‑cellbio‑120319‑023657 34196570
    [Google Scholar]
  20. He X. Semenov M. Tamai K. Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling:Arrows point the way. Development 2004 131 8 1663 1677 10.1242/dev.01117 15084453
    [Google Scholar]
  21. Lumetti S. Calciolari E. Parisi L. Toffoli A. Mazzotta S. Ferrillo S. Ierardo G. Macaluso G.M. Galli C. Manfredi E. Study of GSK3b inhibitors SB415286 and SB216763 to improve osteoblastic differentiation on microstructured titanium. J. Biol. Regul. Homeost. Agents 2017 31 3 579 587 28952290
    [Google Scholar]
  22. Buttrick G.J. Wakefield J.G. PI3-K and GSK-3: Akt-ing together with microtubules. Cell Cycle 2008 7 17 2621 2625 10.4161/cc.7.17.6514 18728390
    [Google Scholar]
  23. Liu C. Li Y. Semenov M. Han C. Baeg G.H. Tan Y. Zhang Z. Lin X. He X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002 108 6 837 847 10.1016/S0092‑8674(02)00685‑2 11955436
    [Google Scholar]
  24. Sakanaka C. Weiss J.B. Williams L.T. Bridging of β-catenin and glycogen synthase kinase-3β by Axin and inhibition of β-catenin-mediated transcription. Proc. Natl. Acad. Sci. USA 1998 95 6 3020 3023 10.1073/pnas.95.6.3020 9501208
    [Google Scholar]
  25. Liu S. Wang J. Shao T. Song P. Kong Q. Hua H. Luo T. Jiang Y. The natural agent rhein induces β‐catenin degradation and tumour growth arrest. J. Cell. Mol. Med. 2018 22 1 589 599 10.1111/jcmm.13346 29024409
    [Google Scholar]
  26. Hagen T. Daniel D.E. Culbert A.A. Reith A.D. Expression and characterization of GSK-3 mutants and their effect on beta-catenin phosphorylation in intact cells. J. Biol. Chem. 2002 277 26 23330 23335 10.1074/jbc.M201364200 11967263
    [Google Scholar]
  27. Latres E. Chiaur D.S. Pagano M. The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-catenin. Oncogene 1999 18 4 849 854 10.1038/sj.onc.1202653 10023660
    [Google Scholar]
  28. DeBruine Z.J. Xu H.E. Melcher K. Assembly and architecture of the Wnt/β‐catenin signalosome at the membrane. Br. J. Pharmacol. 2017 174 24 4564 4574 10.1111/bph.14048 28941231
    [Google Scholar]
  29. Nusse R. Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. cell 2017 169 6 985 999 10.1016/j.cell.2017.05.016 28575679
    [Google Scholar]
  30. Sharpe C. Lawrence N. Arias A.M. Wnt signalling: A theme with nuclear variations. BioEssays 2001 23 4 311 318 10.1002/bies.1045 11268036
    [Google Scholar]
  31. Bodine P.V.N. Komm B.S. Wnt signaling and osteoblastogenesis. Rev. Endocr. Metab. Disord. 2007 7 1-2 33 39 10.1007/s11154‑006‑9002‑4 16960757
    [Google Scholar]
  32. Carballo R.E. Ulsamer A. Susperregui A.R.G. Céspedes M.C. García S.E. Bartrons R. Rosa J.L. Ventura F. Conserved regulatory motifs in osteogenic gene promoters integrate cooperative effects of canonical Wnt and BMP pathways. J. Bone Miner. Res. 2011 26 4 718 729 10.1002/jbmr.260 20878775
    [Google Scholar]
  33. Huang Y. Zhang X. Du K. Yang F. Shi Y. Huang J. Tang T. Chen D. Dai K. Inhibition of β‐catenin signaling in chondrocytes induces delayed fracture healing in mice. J. Orthop. Res. 2012 30 2 304 310 10.1002/jor.21505 21818768
    [Google Scholar]
  34. Ge L. Cui Y. Liu B. Yin X. Pang J. Han J. ERα and Wnt/β‑catenin signaling pathways are involved in angelicin‑dependent promotion of osteogenesis. Mol. Med. Rep. 2019 19 5 3469 3476 10.3892/mmr.2019.9999 30864714
    [Google Scholar]
  35. Fabre S. Brentano F.T. Solal C.M. Anti-sclerostin antibodies in osteoporosis and other bone diseases. J. Clin. Med. 2020 9 11 3439 10.3390/jcm9113439 33114755
    [Google Scholar]
  36. Peng Z. Xu R. You Q. Role of traditional chinese medicine in bone regeneration and osteoporosis. Front. Bioeng. Biotechnol. 2022 10 911326 10.3389/fbioe.2022.911326 35711635
    [Google Scholar]
  37. Yu C.M. Yan F. Ding Z.Q. Clinical study of Qi-Gui-Jian-Gu decoction combined with conventional Western medicine in the treatment of osteoporosis of kidney deficiency and blood stasis. New traditional. Chin. Med. 2022 54 19 133 137
    [Google Scholar]
  38. Li B.F. 45 cases of osteoporotic thoracolumbar vertebral compression fractures were treated with Qi-Gui-Jian-Gu decoction combined with percutaneous vertebroplasty %J Henan. Zhong Yi Xue 2017 37 08 1424 1426
    [Google Scholar]
  39. Yan D. Zheng G. Wang C. Chen Z. Mao T. Gao J. Yan Y. Chen X. Ji X. Yu J. Mo S. Wen H. Han W. Zhou M. Wang Y. Wang J. Tang K. Cao Z. HIT 2.0: An enhanced platform for Herbal Ingredients’ Targets. Nucleic Acids Res. 2022 50 D1 D1238 D1243 10.1093/nar/gkab1011 34986599
    [Google Scholar]
  40. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  41. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  42. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem 2023 update. Nucleic Acids Res. 2023 51 D1 D1373 D1380 10.1093/nar/gkac956 36305812
    [Google Scholar]
  43. Stelzer G. The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics. 2016 54 1.30.1 1.30.33 10.1002/cpbi.5
    [Google Scholar]
  44. Amberger J.S. Bocchini C.A. Schiettecatte F. Scott A.F. Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015 43 D1 D789 D798 10.1093/nar/gku1205 25428349
    [Google Scholar]
  45. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. Mering v.C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  46. Sherman B.T. Hao M. Qiu J. Jiao X. Baseler M.W. Lane H.C. Imamichi T. Chang W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 50 W1 W216 W221 10.1093/nar/gkac194 35325185
    [Google Scholar]
  47. Mack S.A. Maltby K.M. Hilton M.J. Demineralized murine skeletal histology. Methods Mol. Biol. 2014 1130 165 183 10.1007/978‑1‑62703‑989‑5_12 24482172
    [Google Scholar]
  48. Varghese F. Bukhari A.B. Malhotra R. De A. IHC Profiler: An open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One 2014 9 5 e96801 10.1371/journal.pone.0096801 24802416
    [Google Scholar]
  49. Nicholson J.A. Makaram N. Simpson A.H.R.W. Keating J.F. Fracture nonunion in long bones: A literature review of risk factors and surgical management. Injury 2021 52 Suppl. 2 S3 S11 10.1016/j.injury.2020.11.029 33221036
    [Google Scholar]
  50. Mills L.A. Aitken S.A. Simpson A.H.R.W. The risk of non-union per fracture: Current myths and revised figures from a population of over 4 million adults. Acta Orthop. 2017 88 4 434 439 10.1080/17453674.2017.1321351 28508682
    [Google Scholar]
  51. Wang J. Yang J. Cheng X. Yin F. Zhao Y. Zhu Y. Yan Z. Khodaei F. Ommati M.M. Manthari R.K. Wang J. Influence of Calcium Supplementation against Fluoride-Mediated Osteoblast Impairment in Vitro: Involvement of the Canonical Wnt/β-Catenin Signaling Pathway. J. Agric. Food Chem. 2019 67 37 10285 10295 10.1021/acs.jafc.9b03835 31443611
    [Google Scholar]
  52. Sisask G. Marsell R. Andersson S.A. Larsson S. Nilsson O. Ljunggren Ö. Jonsson K.B. Rats treated with AZD2858, a GSK3 inhibitor, heal fractures rapidly without endochondral bone formation. Bone 2013 54 1 126 132 10.1016/j.bone.2013.01.019 23337038
    [Google Scholar]
  53. Xu H. Duan J. Ning D. Li J. Liu R. Yang R. Jiang J.X. Shang P. Role of Wnt signaling in fracture healing. BMB Rep. 2014 47 12 666 672 10.5483/BMBRep.2014.47.12.193 25301020
    [Google Scholar]
  54. Low S.A. Galliford C.V. Yang J. Low P.S. Kopeček J. Biodistribution of fracture-targeted GSK3β inhibitor-loaded micelles for improved fracture healing. Biomacromolecules 2015 16 10 3145 3153 10.1021/acs.biomac.5b00777 26331790
    [Google Scholar]
  55. Xie H. Lin Y. Fang F. Glycogen synthase kinase-3β inhibitor promotes the migration and osteogenic differentiation of rat dental pulp stem cells via the β-catenin/PI3K/Akt signaling pathway. J. Dent. Sci. 2022 17 2 802 810 10.1016/j.jds.2021.09.035 35756816
    [Google Scholar]
  56. Sun X. Wang H. Huang W. Yu H. Shen T. Song M. Han Y. Li Y. Zhu Y. Inhibition of bone formation in rats by aluminum exposure via Wnt/β-catenin pathway. Chemosphere 2017 176 1 7 10.1016/j.chemosphere.2017.02.086 28249195
    [Google Scholar]
  57. Xie C.L. Yue Y.T. Xu J.P. Li N. Lin T. Ji G.R. Yang X.W. Xu R. Penicopeptide A (PPA) from the deep-sea-derived fungus promotes osteoblast-mediated bone formation and alleviates ovariectomy-induced bone loss by activating the AKT/GSK-3β/β-catenin signaling pathway. Pharmacol. Res. 2023 197 106968 10.1016/j.phrs.2023.106968 37866705
    [Google Scholar]
  58. Li J. Zhang T. Huang C. Xu M. Xie W. Pei Q. Xie X. Wang B. Li X. Chemerin located in bone marrow promotes osteogenic differentiation and bone formation via Akt/Gsk3β/β‐catenin axis in mice. J. Cell. Physiol. 2021 236 8 6042 6054 10.1002/jcp.30290 33492671
    [Google Scholar]
  59. Lauing K.L. Sundaramurthy S. Nauer R.K. Callaci J.J. Exogenous activation of Wnt/β-catenin signaling attenuates binge alcohol-induced deficient bone fracture healing. Alcohol Alcohol. 2014 49 4 399 408 10.1093/alcalc/agu006 24627571
    [Google Scholar]
  60. Lee Y.C. Chan Y.H. Hsieh S.C. Lew W.Z. Feng S.W. Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int. J. Mol. Sci. 2019 20 20 5015 10.3390/ijms20205015 31658685
    [Google Scholar]
  61. Xu W. Liu B. Liu X. Chiang M.Y.M. Li B. Xu Z. Liao X. Regulation of BMP2‐induced intracellular calcium increases in osteoblasts. J. Orthop. Res. 2016 34 10 1725 1733 10.1002/jor.23196 26890302
    [Google Scholar]
  62. Chen L. Zhang M. Ding Y. Li M. Zhong J. Feng S. Fluoride induces hypomethylation of BMP2 and activates osteoblasts through the Wnt/β-catenin signaling pathway. Chem. Biol. Interact. 2022 356 109870 10.1016/j.cbi.2022.109870 35218729
    [Google Scholar]
  63. Silvério K.G. Davidson K.C. James R.G. Adams A.M. Foster B.L. Nociti F.H. Jr Somerman M.J. Moon R.T. Wnt/β‐catenin pathway regulates bone morphogenetic protein (BMP2)‐mediated differentiation of dental follicle cells. J. Periodontal Res. 2012 47 3 309 319 10.1111/j.1600‑0765.2011.01433.x 22150562
    [Google Scholar]
  64. Oh W.T. Yang Y.S. Xie J. Ma H. Kim J.M. Park K.H. Oh D.S. Min P.K.H. Greenblatt M.B. Gao G. Shim J.H. WNT-modulating gene silencers as a gene therapy for osteoporosis, bone fracture, and critical-sized bone defects. Mol. Ther. 2023 31 2 435 453 10.1016/j.ymthe.2022.09.018 36184851
    [Google Scholar]
  65. Pan F. Shao J. Shi C.J. Li Z. Fu W. Zhang J. Apigenin promotes osteogenic differentiation of mesenchymal stem cells and accelerates bone fracture healing via activating Wnt/β-catenin signaling. Am. J. Physiol. Endocrinol. Metab. 2021 320 4 E760 E771 10.1152/ajpendo.00543.2019 33645251
    [Google Scholar]
  66. Wang Y. Hang K. Ying L. Wu J. Wu X. Zhang W. Li L. Wang Z. Bai J. Gao X. Xue D. Pan Z. LAMP2A regulates the balance of mesenchymal stem cell adipo-osteogenesis via the Wnt/β-catenin/GSK3β signaling pathway. J. Mol. Med. 2023 101 7 783 799 10.1007/s00109‑023‑02328‑1 37162558
    [Google Scholar]
  67. Zhang M. Bian Y.Q. Tao H.M. Yang X.F. Mu W.D. Simvastatin induces osteogenic differentiation of MSCs via Wnt/β-catenin pathway to promote fracture healing. Eur. Rev. Med. Pharmacol. Sci. 2018 22 9 2896 2905 29771446
    [Google Scholar]
  68. Bailey S. Karsenty G. Gundberg C. Vashishth D. Osteocalcin and osteopontin influence bone morphology and mechanical properties. Ann. N. Y. Acad. Sci. 2017 1409 1 79 84 10.1111/nyas.13470 29044594
    [Google Scholar]
  69. Sun J. Zhou H. Deng Y. Zhang Y. Gu P. Ge S. Fan X. Conditioned medium from bone marrow mesenchymal stem cells transiently retards osteoblast differentiation by downregulating runx2. Cells Tissues Organs 2012 196 6 510 522 10.1159/000339245 22906827
    [Google Scholar]
  70. Zhang C. Cho K. Huang Y. Lyons J.P. Zhou X. Sinha K. McCrea P.D. Crombrugghe d.B. Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix. Proc. Natl. Acad. Sci. USA 2008 105 19 6936 6941 10.1073/pnas.0710831105 18458345
    [Google Scholar]
  71. Sun N.Y. Liu X.L. Gao J. Wu X.H. Dou B. Astragaloside‑IV modulates NGF‑induced osteoblast differentiation via the GSK3β/β‑catenin signalling pathway. Mol. Med. Rep. 2021 23 1 19 33179111
    [Google Scholar]
  72. Wang F. Qian H. Kong L. Wang W. Wang X. Xu Z. Chai Y. Xu J. Kang Q. Accelerated bone regeneration by astragaloside iv through stimulating the coupling of osteogenesis and angiogenesis. Int. J. Biol. Sci. 2021 17 7 1821 1836 10.7150/ijbs.57681 33994865
    [Google Scholar]
  73. Chai Y. Pu X. Wu Y. Tian X. Li Q. Zeng F. Wang J. Gao J. Gong H. Chen Y. Inhibitory effect of astragalus membranaceus on osteoporosis in samp6 mice by regulating vitamind/fgf23/klotho signaling pathway. Bioengineered 2021 12 1 4464 4474 10.1080/21655979.2021.1946633 34304712
    [Google Scholar]
  74. Yang Q. Populo S.M. Zhang J. Yang G. Kodama H. Effect of angelica sinensis on the proliferation of human bone cells. Clin. Chim. Acta 2002 324 1-2 89 97 10.1016/S0009‑8981(02)00210‑3 12204429
    [Google Scholar]
  75. Yang F. Lin Z.W. Huang T.Y. Chen T.T. Cui J. Li M.Y. Hua Y.Q. Ligustilide, a major bioactive component of Angelica sinensis, promotes bone formation via the GPR30/EGFR pathway. Sci. Rep. 2019 9 1 6991 10.1038/s41598‑019‑43518‑7 31061445
    [Google Scholar]
  76. Xia B. Xu B. Sun Y. Xiao L. Pan J. Jin H. Tong P. The effects of Liuwei Dihuang on canonical Wnt/β-catenin signaling pathway in osteoporosis. J. Ethnopharmacol. 2014 153 1 133 141 10.1016/j.jep.2014.01.040 24530448
    [Google Scholar]
/content/journals/cad/10.2174/0115734099345441250121101413
Loading
/content/journals/cad/10.2174/0115734099345441250121101413
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: GSK3β ; Qi-Gui-Jian-Gu decoction ; mesenchymal stem cells ; fracture ; β-catenin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test