Skip to content
2000
image of Computational Evaluation of Punica granatum Leaf Phytochemicals against Multi-drug Resistant E. coli: Molecular Docking, ADMET, MD Simulation, and DFT Studies

Abstract

Introduction

Multidrug-resistant (MDR) presents a significant challenge in clinical settings, necessitating the exploration of novel therapeutic agents. Phytochemicals from (pomegranate) leaves have shown potential antibacterial properties. This study aims to identify and evaluate the efficacy of these phytochemicals against MDR

Objectives

This study aims to identify and evaluate the efficacy of most potential phytochemical of leaf against MDR through molecular docking, adme, toxicity, molecular dynamic simulation, MMPBSA and DFT approaches

Methods

We performed molecular docking of 11 phytochemicals from the IMPPAT database with four MDR targets: 1AJ6, 1FJ8, 4BJP, and 6BU3. Granatin B demonstrated the best binding affinity and was further analyzed. ADME (Absorption, Distribution, Metabolism, and Excretion) and toxicity analyses were conducted to assess its pharmacokinetic properties and safety profile. Molecular Dynamics (MD) simulations were performed to evaluate the stability of Granatin B with the targets. Finally, density functional theory (DFT) analysis was carried out to understand the electronic properties and reactivity of Granatin B

Results

Granatin B exhibited the highest binding affinity among the 11 phytochemicals, indicating strong potential as an inhibitor of MDR . ADME analysis revealed favorable pharmacokinetic properties and toxicity analysis confirmed that Granatin B is non-toxic. MD simulations showed stable interactions between Granatin B and all four targets. DFT analysis provided insights into the electronic properties and reactive sites of Granatin B, supporting its potential mechanism of action

Conclusion

Granatin B from leaves is a promising candidate for treating MDR E. coli infections. The integration of molecular docking, ADME, toxicity, MD simulations, and DFT analysis underscores its therapeutic potential and paves the way for further experimental validation and development as a novel antibacterial agent

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099343126241105102839
2025-01-09
2025-04-10
Loading full text...

Full text loading...

References

  1. Salam M.A. Al-Amin M.Y. Salam M.T. Pawar J.S. Akhter N. Rabaan A.A. Alqumber M.A. 2023 Antimicrobial resistance: A growing serious threat for global public health. Healthcare 11 13 1946 10.3390/healthcare11131946
    [Google Scholar]
  2. Makvana S. Krilov L.R. Escherichia coli Infections. Pediatr. Rev. 2015 36 4 167 171 10.1542/pir.36.4.167 25834220
    [Google Scholar]
  3. Peng Z. Wang X. Huang J. Li B. Chapter 53 - Pathogenic Escherichia coli. Molecular Medical Microbiology. Academic Press 2024 3rd ed 1065 1096 10.1016/B978‑0‑12‑818619‑0.00069‑1
    [Google Scholar]
  4. Peng Z. Hu Z. Li Z. Zhang X. Jia C. Li T. Dai M. Tan C. Xu Z. Wu B. Chen H. Wang X. Antimicrobial resistance and population genomics of multidrug-resistant Escherichia coli in pig farms in mainland China. Nat. Commun. 2022 13 1 1116 10.1038/s41467‑022‑28750‑6 35236849
    [Google Scholar]
  5. Alhashash F. Weston V. Diggle M. McNally A. Multidrug-resistant Escherichia coli bacteremia. Emerg. Infect. Dis. 2013 19 10 1699 1701 10.3201/eid1910.130309 24050656
    [Google Scholar]
  6. Terreni M. Taccani M. Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules 2021 26 9 2671 10.3390/molecules26092671 34063264
    [Google Scholar]
  7. Boutaiba Benklaouz M. Aggad H. Benameur Q. Resistance to multiple first-line antibiotics among Escherichia coli from poultry in Western Algeria. Vet. World 2020 13 2 290 295 10.14202/vetworld.2020.290‑295 32255971
    [Google Scholar]
  8. Kresken M. Pfeifer Y. Wagenlehner F. Werner G. Wohlfarth E. Therapy O.B.O.S.G.R.O.T.P.E.S.F.I. Resistance to mecillinam and nine other antibiotics for oral use in Escherichia coli isolated from urine specimens of primary care patients in Germany, 2019/20. Antibiotics (Basel) 2022 11 6 751 10.3390/antibiotics11060751 35740157
    [Google Scholar]
  9. Walker M.M. Roberts J.A. Rogers B.A. Harris P.N.A. Sime F.B. Current and emerging treatment options for multidrug resistant Escherichia coli urosepsis: A review. Antibiotics (Basel) 2022 11 12 1821 10.3390/antibiotics11121821 36551478
    [Google Scholar]
  10. Tan X. Pan Q. Mo C. Li X. Liang X. Li Y. Lan Y. Chen L. Carbapenems vs alternative antibiotics for the treatment of complicated urinary tract infection. Medicine (Baltimore) 2020 99 2 e18769 10.1097/MD.0000000000018769 31914101
    [Google Scholar]
  11. Sharma J. Sharma D. Singh A. Sunita K. Colistin resistance and management of drug resistant infections. Can. J. Infect. Dis. Med. Microbiol. 2022 2022 1 1 10 10.1155/2022/4315030 36536900
    [Google Scholar]
  12. Wang Q. Zhang P. Zhao D. Jiang Y. Zhao F. Wang Y. Li X. Du X. Yu Y. Emergence of tigecycline resistance in Escherichia coli co-producing MCR-1 and NDM-5 during tigecycline salvage treatment. Infect. Drug Resist. 2018 11 2241 2248 10.2147/IDR.S179618 30519062
    [Google Scholar]
  13. Zalas-Więcek P. Gospodarek-Komkowska E. Antimicrobial susceptibility of multi-drug and extensively-drug-resistant Escherichia coli to ceftolozane-tazobactam and ceftazidime-avibactam: An in vitro study. Postepy Hig. Med. Dosw. 2020 74 77 83 10.5604/01.3001.0014.0859
    [Google Scholar]
  14. Hobson C. Chan A.N. Wright G.D. The antibiotic resistome: A guide for the discovery of natural products as antimicrobial agents. Chem. Rev. 2021 121 6 3464 3494 10.1021/acs.chemrev.0c01214 33606500
    [Google Scholar]
  15. Fakudze N.T. Aniogo E.C. George B.P. Abrahamse H. The therapeutic efficacy of Punica granatum and its bioactive constituents with special reference to photodynamic therapy. Plants 2022 11 21 2820 10.3390/plants11212820 36365273
    [Google Scholar]
  16. Khan N. Fahad S. Naushad M. Faisal S. 2020 Pomegrantes economics and medicinal aspects in the world. SSRN 10.2139/ssrn.3597891
    [Google Scholar]
  17. Miguel M.G. Neves M.A. Antunes M.D. Pomegranate (Punica granatum L.): A medicinal plant with myriad biological properties - A short review. J. Med. Plants Res. 2010 4 25 2836 2847 10.5897/JMPR10.411
    [Google Scholar]
  18. Ismail T. Sestili P. Akhtar S. Pomegranate peel and fruit extracts: A review of potential anti-inflammatory and anti-infective effects. J. Ethnopharmacol. 2012 143 2 397 405 10.1016/j.jep.2012.07.004 22820239
    [Google Scholar]
  19. Bhandari P. Pomegranate (Punica granatum L). Ancient seeds for modern cure? Review of potential therapeutic applications. Int. J. Nutr. Pharmacol. Neurol. Dis. 2012 2 3 171 184 10.4103/2231‑0738.99469
    [Google Scholar]
  20. Maphetu N. Unuofin J.O. Masuku N.P. Olisah C. Lebelo S.L. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomed. Pharmacother. 2022 153 113256 10.1016/j.biopha.2022.113256 36076615
    [Google Scholar]
  21. Khaleel A.I. Sijam K. Rashid T.S. Bin Ahmad K. Phytochemical determination and antibacterial activity of Punica granatum peel extracts against plant pathogenic bacteria. Am. J. Plant Sci. 2016 7 1 159 166 10.4236/ajps.2016.71017
    [Google Scholar]
  22. Magangana T.P. Makunga N.P. Fawole O.A. Opara U.L. Processing factors affecting the phytochemical and nutritional properties of pomegranate (Punica granatum L.) peel waste: A review. Molecules 2020 25 20 4690 10.3390/molecules25204690 33066412
    [Google Scholar]
  23. Noor U. Soni S. Gupta E. Bioactivity and therapeutic applications of Punica granatum L. peel: Evidence and prospects. Curr. Nutr. Food Sci. 2024 20 7 811 822 10.2174/1573401319666230727104835
    [Google Scholar]
  24. Pourahmad Jaktaji R. Mohiti E. Study of Mutations in the DNA gyrase gyrA Gene of Escherichia coli. Iran. J. Pharm. Res. 2010 9 1 43 48 24363705
    [Google Scholar]
  25. Tsay J.T. Rock C.O. Jackowski S. Overproduction of beta-ketoacyl-acyl carrier protein synthase I imparts thiolactomycin resistance to Escherichia coli K-12. J. Bacteriol. 1992 174 2 508 513 10.1128/jb.174.2.508‑513.1992 1729241
    [Google Scholar]
  26. Nguyen-Distèche M. Fraipont C. Buddelmeijer N. Nanninga N. The structure and function of Escherichia coli penicillin-binding protein 3. Cell. Mol. Life Sci. 1998 54 4 309 316 10.1007/s000180050157 9614966
    [Google Scholar]
  27. Singh T. Singh P.K. Das S. Wani S. Jawed A. Dar S.A. Transcriptome analysis of beta-lactamase genes in diarrheagenic Escherichia coli. Sci. Rep. 2019 9 1 3626 10.1038/s41598‑019‑40279‑1 30842518
    [Google Scholar]
  28. Siggaard-Andersen M. Wissenbach M. Chuck J.A. Svendsen I. Olsen J.G. von Wettstein-Knowles P. The fabJ-encoded beta-ketoacyl-[acyl carrier protein] synthase IV from Escherichia coli is sensitive to cerulenin and specific for short-chain substrates. Proc. Natl. Acad. Sci. USA 1994 91 23 11027 11031 10.1073/pnas.91.23.11027 7972002
    [Google Scholar]
  29. Mains K. Fox J.M. Ketosynthase mutants enable short-chain fatty acid biosynthesis in E. coli. Metab. Eng. 2023 77 118 127 10.1016/j.ymben.2023.03.008 36963462
    [Google Scholar]
  30. Aribisala J.O. Idowu K. Makhanya T.R. Sabiu S. Cheminformatics identification of phenolics as modulators of key penicillin−binding proteins of Escherichia coli towards interventive antibacterial therapy. Mol. Simul. 2023 49 13-14 1324 1340 10.1080/08927022.2023.2228423
    [Google Scholar]
  31. Nasrollahian S. Graham J.P. Halaji M. A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli. Front. Cell. Infect. Microbiol. 2024 14 1387497 10.3389/fcimb.2024.1387497 38638826
    [Google Scholar]
  32. Foudraine D.E. Strepis N. Stingl C. ten Kate M.T. Verbon A. Klaassen C.H.W. Goessens W.H.F. Luider T.M. Dekker L.J.M. Exploring antimicrobial resistance to beta-lactams, aminoglycosides and fluoroquinolones in E. coli and K. pneumoniae using proteogenomics. Sci. Rep. 2021 11 1 12472 10.1038/s41598‑021‑91905‑w 34127720
    [Google Scholar]
  33. Holdgate G.A. Tunnicliffe A. Ward W.H.J. Weston S.A. Rosenbrock G. Barth P.T. Taylor I.W.F. Pauptit R.A. Timms D. The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: A thermodynamic and crystallographic study. Biochemistry 1997 36 32 9663 9673 10.1021/bi970294+ 9245398
    [Google Scholar]
  34. Price A.C. Choi K.H. Heath R.J. Li Z. White S.W. Rock C.O. Inhibition of β-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin. Structure and mechanism. J. Biol. Chem. 2001 276 9 6551 6559 10.1074/jbc.M007101200 11050088
    [Google Scholar]
  35. Sauvage E. Derouaux A. Fraipont C. Joris M. Herman R. Rocaboy M. Schloesser M. Dumas J. Kerff F. Nguyen-Distèche M. Charlier P. Crystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli. PLoS One 2014 9 5 e98042 10.1371/journal.pone.0098042 24875494
    [Google Scholar]
  36. Pemberton O.A. Zhang X. Nichols D.A. DeFrees K. Jaishankar P. Bonnet R. Adams J. Shaw L.N. Renslo A.R. Chen Y. Antibacterial spectrum of a 1H-Tetrazole-based reversible inhibitor of serine β-lactamases. Antimicrob. Agents Chemother. 2018 62 8 e02563-17 10.1128/AAC.02563‑17 29844038
    [Google Scholar]
  37. Guex N. Swiss-PDBViewer: A fast and easy-to-use PDB viewer for Macintosh and PC. 1996 Available from: https://cir.nii.ac.jp/crid/1573668925311954688
  38. Morris G.M. Goodsell D.S. Pique M.E. Lindstrom W. Huey R. Forli S. Olson A.J. Modulation of polyglutamine conformations and dimer formation by the N-terminus of huntingtin. J. Mol. Bio. 1295 1309 396 5 2010 10.1016/j.jmb.2009.12.017
    [Google Scholar]
  39. Karthikeyan Mohanraj K.M. Karthikeyan B.S. Vivek-Ananth R.P. Chand R.P.B. Aparna S.R. Pattulingam Mangalapandi P.M. Areejit Samal A.S. 2018 IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci. Rep. 8 1 4329 10.1038/s41598‑018‑22631‑z 29531263
    [Google Scholar]
  40. Saíz-Urra L. Cabrera M.A. Froeyen M. Exploring the conformational changes of the ATP binding site of gyrase B from Escherichia coli complexed with different established inhibitors by using molecular dynamics simulation. J. Mol. Graph. Model. 2011 29 5 726 739 10.1016/j.jmgm.2010.12.005 21216167
    [Google Scholar]
  41. Vlachakis D. Tsaniras S.C. Kossida S. Insights into the structure and 3D spatial arrangement of the b-ketoacyl carrier protein synthases. J. Mol. Biochem. 2013 2 3 10.12691/jmb‑2‑3‑1
    [Google Scholar]
  42. Orozco-Lopez F. Guerrero-Villalobos L.R. Cuervo-Pardo P.A. Computer-aided design, synthesis, and characterization of molecular hybrids of dihydropyrazoles, aminopyrimidines, and thiazolidin-4-ones as potential inhibitors of the penicillin-binding protein 3 (PBP-3) of Escherichia coli. Univ. Sci. (Bogota) 2021 26 1 17 35 10.11144/Javeriana.SC26‑1.cads
    [Google Scholar]
  43. Elfaky M.A. El-Halawany A.M. Koshak A.E. Alshali K.Z. El-Araby M.E. Khayat M.T. Abdallah H.M. Bioassay guided isolation and docking studies of a potential β-lactamase inhibitor from Clutia myricoides. Molecules 2020 25 11 2566 10.3390/molecules25112566 32486455
    [Google Scholar]
  44. Kim S. Thiessen P.A. Bolton E.E. Chen J. Fu G. Gindulyte A. Han L. He J. He S. Shoemaker B.A. Wang J. Yu B. Zhang J. Bryant S.H. PubChem substance and compound databases. Nucleic Acids Res. 2016 44 D1 D1202 D1213 10.1093/nar/gkv951 26400175
    [Google Scholar]
  45. Gasteiger J. Marsili M. Iterative partial equalization of orbital electronegativity - A rapid access to atomic charges. Tetrahedron 1980 36 22 3219 3228 10.1016/0040‑4020(80)80168‑2
    [Google Scholar]
  46. Forli S. Huey R. Pique M.E. Sanner M.F. Goodsell D.S. Olson A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016 11 5 905 919 10.1038/nprot.2016.051 27077332
    [Google Scholar]
  47. Dianel Mohd Tazizi M.H. Suhaimi A.M. Wahab H.A. Gazzali A.M. Molecular docking and ADMET modelling in the design of new targeted anti-tuberculosis drug. Malays. J. Med. Health Sci. 2024 20 10.17676/mjmhs.20.1.1
    [Google Scholar]
  48. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  49. Krause F. Voigt K. Di Ventura B. Öztürk M.A. ReverseDock: A web server for blind docking of a single ligand to multiple protein targets using AutoDock Vina. Front. Mol. Biosci. 2023 10 1243970 10.3389/fmolb.2023.1243970 37881441
    [Google Scholar]
  50. Holt P.A. Chaires J.B. Trent J.O. Molecular docking of intercalators and groove-binders to nucleic acids using Autodock and Surflex. J. Chem. Inf. Model. 2008 48 8 1602 1615 10.1021/ci800063v 18642866
    [Google Scholar]
  51. Free download: BIOVIA discovery studio visualizer. Available from: https://discover.3ds.com/discovery-studio-visualizer-download
  52. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  53. Sardar H. Drug like potential of Daidzein using SwissADME prediction: In silico approaches. 2023 2 1 10.62368/pn.vi.18
    [Google Scholar]
  54. Banerjee P. Eckert A.O. Schrey A.K. Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018 46 W1 W257 W263 10.1093/nar/gky318 29718510
    [Google Scholar]
  55. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  56. Jorgensen W.L. Chandrasekhar J. Madura J.D. Impey R.W. Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983 79 2 926 935 10.1063/1.445869
    [Google Scholar]
  57. Huang J. MacKerell A.D. Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013 34 25 2135 2145 10.1002/jcc.23354 23832629
    [Google Scholar]
  58. Zoete V. Cuendet M.A. Grosdidier A. Michielin O. SwissParam: A fast force field generation tool for small organic molecules. J. Comput. Chem. 2011 32 11 2359 2368 10.1002/jcc.21816 21541964
    [Google Scholar]
  59. Paissoni C. Spiliotopoulos D. Musco G. Spitaleri A. GMXPBSA 2.0: A GROMACS tool to perform MM/PBSA and computational alanine scanning. Comput. Phys. Commun. 2014 185 11 2920 2929 10.1016/j.cpc.2014.06.019
    [Google Scholar]
  60. Berendsen H.J.C. Postma J.P.M. van Gunsteren W.F. Hermans J. Interaction models for water in relation to protein hydration. Intermolecular Forces Pullman B. Dordrecht Springer 1981 331 342 10.1007/978‑94‑015‑7658‑1_21
    [Google Scholar]
  61. Nikolsky K.S. Kulikova L.I. Petrovskiy D.V. Rudnev V.R. Butkova T.V. Malsagova K.A. Three-helix bundle and SH3-type barrels: Autonomously stable structural motifs in small and large proteins. J. Biomol. Struct. Dyn. 2023 ••• 1 15 10.1080/07391102.2023.2232747 37640007
    [Google Scholar]
  62. Sang P. Liu S.Q. Yang L.Q. New insight into mechanisms of protein adaptation to high temperatures: A comparative molecular dynamics simulation study of thermophilic and mesophilic subtilisin-like serine proteases. Int. J. Mol. Sci. 2020 21 9 3128 10.3390/ijms21093128 32354206
    [Google Scholar]
  63. Li Q. Peng X. Peng T. Tang Q. Liu C. Shi X. Molecular dynamics simulations of coating process: Influences of thermostat methods. J. Comput. Theor. Nanosci. 2016 13 7 4629 4633 10.1166/jctn.2016.5328
    [Google Scholar]
  64. Ke Q. Gong X. Liao S. Duan C. Li L. Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. J. Mol. Liq. 2022 365 120116 10.1016/j.molliq.2022.120116
    [Google Scholar]
  65. Petersen H.G. Accuracy and efficiency of the particle mesh Ewald method. J. Chem. Phys. 1995 103 9 3668 3679 10.1063/1.470043
    [Google Scholar]
  66. Hess B. Kutzner C. van der Spoel D. Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008 4 3 435 447 10.1021/ct700301q 26620784
    [Google Scholar]
  67. Maruyama Y. Igarashi R. Ushiku Y. Mitsutake A. Analysis of protein folding simulation with moving root mean square deviation. J. Chem. Inf. Model. 2023 63 5 1529 1541 10.1021/acs.jcim.2c01444 36821519
    [Google Scholar]
  68. Shahzad M.A. 2018 Free energy calculations of protein-water complexes with Gromacs. bioRxiv 10.1101/305037
    [Google Scholar]
  69. Gorelov S. Titov A. Tolicheva O. Konevega A. Shvetsov A. DSSP in Gromacs: Tool for defining secondary structures of proteins in trajectories. J. Chem. Inf. Model. 2024 64 9 3593 3598 10.1021/acs.jcim.3c01344 38655711
    [Google Scholar]
  70. Zagrovic B. Jayachandran G. Millett I.S. Doniach S. Pande V.S. How large is an α-helix? Studies of the radii of gyration of helical peptides by small-angle X-ray scattering and molecular dynamics. J. Mol. Biol. 2005 353 2 232 241 10.1016/j.jmb.2005.08.053 16171817
    [Google Scholar]
  71. Dong T. Gong T. Li W. Accurate estimation of solvent accessible surface area for coarse-grained biomolecular structures with deep learning. J. Phys. Chem. B 2021 125 33 9490 9498 10.1021/acs.jpcb.1c05203 34383495
    [Google Scholar]
  72. Briones R. Blau C. Kutzner C. de Groot B.L. Aponte-Santamaría C. Gromaps: A gromacs-based toolset to analyse density maps derived from molecular dynamics simulations. Biophys. J. 2019 116 1 4 11 10.1016/j.bpj.2018.11.3126 30558883
    [Google Scholar]
  73. Buslaev P. Gordeliy V. Grudinin S. Gushchin I. Principal component analysis of lipid molecule conformational changes in molecular dynamics simulations. J. Chem. Theory Comput. 2016 12 3 1019 1028 10.1021/acs.jctc.5b01106 26765212
    [Google Scholar]
  74. Ahmad S. Abbasi H.W. Shahid S. Gul S. Abbasi S.W. Molecular docking, simulation and MM-PBSA studies of nigella sativa compounds: A computational quest to identify potential natural antiviral for COVID-19 treatment. J. Biomol. Struct. Dyn. 2021 39 12 4225 4233 10.1080/07391102.2020.1775129 32462996
    [Google Scholar]
  75. Hanwell M.D. Curtis D.E. Lonie D.C. Vandermeersch T. Zurek E. Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012 4 1 17 10.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  76. Stewart J.J.P. MOPAC: A semiempirical molecular orbital program. J. Comput. Aided Mol. Des. 1990 4 1 1 103 10.1007/BF00128336 2197373
    [Google Scholar]
  77. Hanson R.M. Jmol – A paradigm shift in crystallographic visualization. J. Appl. Cryst. 2010 43 5 1250 1260 10.1107/S0021889810030256
    [Google Scholar]
  78. Kumar K.S. Haridharan N. Ranjith S. Nataraj A. Studies on the DFT calculations and molecular docking of versatile molecular sensor 1-(6-Aminopyridin-2-yl) -3-(4-nitrophenyl) urea. Chemical Physics Impact 2023 6 100139 10.1016/j.chphi.2022.100139
    [Google Scholar]
/content/journals/cad/10.2174/0115734099343126241105102839
Loading
/content/journals/cad/10.2174/0115734099343126241105102839
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: MDR E. coli ; DFT ; Molecular docking ; MD simulation ; Punica granatum ; ADMET
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test