Skip to content
2000
image of In Silico Identification of Emblica officinalis Compounds Inhibiting Thermolabile Hemolysin from Vibrio alginolyticus in Shrimp

Abstract

Background

Thermolabile hemolysin (TLH) is a key virulent protein of , known for its hemolytic and phospholipase activities, leading to shrimp vibriosis disease. It has been suggested as a potential therapeutic candidate for vibriosis therapy.

Methods

Computational studies, including molecular docking, toxicity analysis, and molecular dynamics (MD) simulations, were conducted to investigate the inhibition of the phospholipase activity of TLH by phytochemicals from .

Results

Out of the twenty-nine compounds, the top three, including Ellagic acid (CID 5281855), Quercetin (CID 5280343), and Kaempferol (CID 5280863), were sorted based on their highest molecular docking scores of -9.2, -8.9, and -8.8, respectively. Subsequently, molecular dynamics (MD) simulations of these selected leads were performed to observe the structural stability of these compounds in the binding sites of TLH protein. The MD simulation outcomes indicated that all three compounds demonstrated superior stability throughout 100 nanoseconds compared to the control compound Resveratrol. The molecular simulation results suggest stable interactions, with average root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) values of 1-2 Å and 0-3 Å. Pharmacokinetic and toxicity analyses were conducted to evaluate the suitability and toxicity of these selected compounds. All top three compounds passed the Lipinski rule, and toxicity criteria.

Conclusion

Therefore, these compounds have the potential to serve as effective therapeutics for controlling infection in shrimp.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099342492250120114644
2025-02-18
2025-07-03
Loading full text...

Full text loading...

References

  1. Pal S. Datta A. Nair G.B. Guhathakurta B. Use of monoclonal antibodies to identify phospholipase C as the enterotoxic factor of the bifunctional hemolysin-phospholipase C molecule of Vibrio cholerae O139. Infect. Immun. 1998 66 8 3974 3977 10.1128/IAI.66.8.3974‑3977.1998 9673290
    [Google Scholar]
  2. Shinoda S. Protein toxins produced by pathogenic vibrios. J. Nat. Toxins 1999 8 2 259 269 10410336
    [Google Scholar]
  3. Shinoda S. Matsuoka H. Tsuchie T. Miyoshi S.I. Yamamoto S. Taniguchi H. Mizuguchi Y. Purification and characterization of a lecithin-dependent haemolysin from Escherichia coli transformed by a Vibrio parahaemolyticus gene. J. Gen. Microbiol. 1991 137 12 2705 2711 10.1099/00221287‑137‑12‑2705 1791426
    [Google Scholar]
  4. Goebel W. Chakraborty T. Kreft J. Bacterial hemolysins as virulence factors. Antonie van Leeuwenhoek 1988 54 5 453 463 10.1007/BF00461864 3144241
    [Google Scholar]
  5. Ostolaza H. Bartolomé B. Serra J.L. de la Cruz F. Goñi F.M. α‐Haemolysin from E. coli purification and self‐aggregation properties. FEBS Lett. 1991 280 2 195 198 10.1016/0014‑5793(91)80291‑A 2013312
    [Google Scholar]
  6. Bhakdi S. Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol. Rev. 1991 55 4 733 751 10.1128/mr.55.4.733‑751.1991 1779933
    [Google Scholar]
  7. Zhang X.H. Austin B. Haemolysins in Vibrio species. J. Appl. Microbiol. 2005 98 5 1011 1019 10.1111/j.1365‑2672.2005.02583.x 15836469
    [Google Scholar]
  8. Jia A. Woo N.Y.S. Zhang X.H. Expression, purification, and characterization of thermolabile hemolysin (TLH) from Vibrio alginolyticus. Dis. Aquat. Organ. 2010 90 2 121 127 10.3354/dao02225 20662368
    [Google Scholar]
  9. Raghunath P. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus. Front. Microbiol. 2015 5 805 10.3389/fmicb.2014.00805 25657643
    [Google Scholar]
  10. Flores-Díaz M. Monturiol-Gross L. Naylor C. Alape-Girón A. Flieger A. Bacterial sphingomyelinases and phospholipases as virulence factors. Microbiol. Mol. Biol. Rev. 2016 80 3 597 628 10.1128/MMBR.00082‑15 27307578
    [Google Scholar]
  11. Wan Y. Liu C. Ma Q. Structural analysis of a Vibrio phospholipase reveals an unusual Ser–His–chloride catalytic triad. J. Biol. Chem. 2019 294 30 11391 11401 10.1074/jbc.RA119.008280 31073025
    [Google Scholar]
  12. Huyen T.T. Trang H.P. Thi-Ngan N. Dinh-Thanh B. Quoc L.P.T. Nam T.N. The responsibility of C-terminal domain in the thermolabile haemolysin activity of Vibrio parahaemolyticus and inhibition treatments by Phellinus sp. extracts. Fish. Aquatic Sci. 2023 26 3 204 215 10.47853/FAS.2023.e17
    [Google Scholar]
  13. Akoh C.C. Lee G.C. Liaw Y.C. Huang T.H. Shaw J.F. GDSL family of serine esterases/lipases. Prog. Lipid Res. 2004 43 6 534 552 10.1016/j.plipres.2004.09.002 15522763
    [Google Scholar]
  14. Leščić Ašler I. Štefanić Z. Maršavelski A. Vianello R. Kojić-Prodić B. LeščićAšler Catalytic dyad in the sgnh hydrolase superfamily: In-depth insight into structural parameters tuning the catalytic process of extracellular lipase from Streptomyces rimosus. ACS Chem. Biol. 2017 12 7 1928 1936 10.1021/acschembio.6b01140 28558229
    [Google Scholar]
  15. Mølgaard A. Kauppinen S. Larsen S. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 2000 8 4 373 383 10.1016/S0969‑2126(00)00118‑0 10801485
    [Google Scholar]
  16. Sun B. Zhang X.H. Tang X. Wang S. Zhong Y. Chen J. Austin B. A single residue change in Vibrio harveyi hemolysin results in the loss of phospholipase and hemolytic activities and pathogenicity for turbot (Scophthalmus maximus). J. Bacteriol. 2007 189 6 2575 2579 10.1128/JB.01650‑06 17220231
    [Google Scholar]
  17. Liu C.H. Cheng W. Hsu J.P. Chen J.C. Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Dis. Aquat. Organ. 2004 61 1-2 169 174 10.3354/dao061169 15584425
    [Google Scholar]
  18. Kumara K.R.P.S. Hettiarachchi M.A.N.G.A.L.I.K.A. ite faeces syndrome caused by Vibrio alginolyticus and Vibrio fluvialis in shrimp, Penaeus monodon (Fabricius 1798) - Multimodal strategy to control the syndrome in Sri Lankan grow-out ponds. Asian Fish. Sci. 2017 30 4 245 261 10.33997/j.afs.2017.30.4.003
    [Google Scholar]
  19. Selvin J. Lipton A.P. Vibrio alginolyticus associated with white spot disease of Penaeus monodon. Dis. Aquat. Organ. 2003 57 1-2 147 150 10.3354/dao057147 14735933
    [Google Scholar]
  20. de Souza Valente C. Wan A.H.L. Vibrio and major commercially important vibriosis diseases in decapod crustaceans. J. Invertebr. Pathol. 2021 181 107527 10.1016/j.jip.2020.107527 33406397
    [Google Scholar]
  21. Laganà P. Caruso G. Minutoli E. Zaccone R. Santi D. Susceptibility to antibiotics of Vibrio spp. and Photobacterium damsela ssp. piscicida strains isolated from Italian aquaculture farms. New Microbiol. 2011 34 1 53 63 21344147
    [Google Scholar]
  22. Yano Y. Hamano K. Satomi M. Tsutsui I. Ban M. Aue-umneoy D. Prevalence and antimicrobial susceptibility of Vibrio species related to food safety isolated from shrimp cultured at inland ponds in Thailand. Food Control 2014 38 30 36 10.1016/j.foodcont.2013.09.019
    [Google Scholar]
  23. Le T.S. Southgate P.C. O’Connor W. Vu S.V. Kurtböke D.İ. Application of bacteriophages to control Vibrio alginolyticus contamination in oyster (Saccostrea glomerata) larvae. Antibiotics 2020 9 7 415 10.3390/antibiotics9070415 32708768
    [Google Scholar]
  24. Tendencia E.A. de la Peña L.D. Antibiotic resistance of bacteria from shrimp ponds. Aquaculture 2001 195 3-4 193 204 10.1016/S0044‑8486(00)00570‑6
    [Google Scholar]
  25. Yadav R. Agarwala M. Phytochemical analysis of some medicinal plants. J. Phytol. 2011 3 10 14
    [Google Scholar]
  26. Bari S. Reza N. Marma M. Ahmed S. Hussain M. Jabed M. Hossain M. Manzoor M. Alam M. Computational analysis of Allium sativum compounds to identify thermolabile hemolysin inhibitors against Vibrio alginolyticus in shrimp. J Adv Biotechnol Exp Ther. 2025 8 1 1 17 10.5455/jabet.2025.01
    [Google Scholar]
  27. Ghosh A.K. Panda S.K. Luyten W. Anti-vibrio and immune-enhancing activity of medicinal plants in shrimp: A comprehensive review. Fish Shellfish Immunol. 2021 117 192 210 10.1016/j.fsi.2021.08.006 34400334
    [Google Scholar]
  28. Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Aspects Med. 2006 27 1 1 93 10.1016/j.mam.2005.07.008 16105678
    [Google Scholar]
  29. Dasaroju S. Current trends in the research of Emblica officinalis (amla): A pharmacological perspective. Int. J. Pharm. Sci. Rev. Res. 2014 24 150 159
    [Google Scholar]
  30. Sawhney R. Hazarika P. Sawhney A. Medicinal plants as antibacterial agents: A special reference to Emblica officinalis, Ocimum sanctum, Aloe vera and Aegle marmelos. Adv Pharm J. 2021 6 5 121 130 10.31024/apj.2021.6.5.1
    [Google Scholar]
  31. Bhandari P. Kamdod M. Emblica officinalis ( Amla ): A review of potential therapeutic applications. Int J Green Pharm. 2012 6 4 257 10.4103/0973‑8258.108204
    [Google Scholar]
  32. Khurana S.K. Tiwari R. Sharun K. Yatoo M.I. Gugjoo M.B. Dhama K. Yatoo, Mohd. I.; Gugjoo M.B.; Dhama K. Emblica officinalis (amla) with a particular focus on its antimicrobial potentials: A review. J. Pure Appl. Microbiol. 2019 13 4 1995 2012 10.22207/JPAM.13.4.11
    [Google Scholar]
  33. Saeed S. Tariq P. Antibacterial activities of Emblica officinalis and Coriandrum sativum against Gram negative urinary pathogens. Pak. J. Pharm. Sci. 2007 20 1 32 35 17337425
    [Google Scholar]
  34. Vazquez-Morado L.E. Robles-Zepeda R.E. Ochoa-Leyva A. Arvizu-Flores A.A. Garibay-Escobar A. Castillo-Yañez F. Lopez-zavala A.A. Biochemical characterization and inhibition of thermolabile hemolysin from Vibrio parahaemolyticus by phenolic compounds. PeerJ 2021 9 e10506 10.7717/peerj.10506 33505784
    [Google Scholar]
  35. Zhao X. Guo Y. Ni P. Liu J. Wang F. Xing Z. Ye S. Resveratrol inhibits the virulence of Vibrio harveyi by reducing the activity of Vibrio harveyi hemolysin. Aquaculture 2020 522 735086 10.1016/j.aquaculture.2020.735086
    [Google Scholar]
  36. Shaker B. Ahmad S. Lee J. Jung C. Na D. In silico methods and tools for drug discovery. Comput. Biol. Med. 2021 137 104851 10.1016/j.compbiomed.2021.104851 34520990
    [Google Scholar]
  37. Wang C. Liu C. Zhu X. Peng Q. Ma Q. Catalytic site flexibility facilitates the substrate and catalytic promiscuity of Vibrio dual lipase/transferase. Nat. Commun. 2023 14 1 4795 10.1038/s41467‑023‑40455‑y 37558668
    [Google Scholar]
  38. Rose P.W. Prlić A. Altunkaya A. Bi C. Bradley A.R. Christie C.H. Costanzo L.D. Duarte J.M. Dutta S. Feng Z. Green R.K. Goodsell D.S. Hudson B. Kalro T. Lowe R. Peisach E. Randle C. Rose A.S. Shao C. Tao Y.P. Valasatava Y. Voigt M. Westbrook J.D. Woo J. Yang H. Young J.Y. Zardecki C. Berman H.M. Burley S.K. The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2017 45 D1 D271 D281 27794042
    [Google Scholar]
  39. Jejurikar B.L. Rohane S.H. Drug designing in discovery studio. Indian J. 2021 14 135 138
    [Google Scholar]
  40. Kaplan W. Littlejohn T.G. Swiss-PDB viewer (deep view). Brief. Bioinform. 2001 2 2 195 197 10.1093/bib/2.2.195 11465736
    [Google Scholar]
  41. Yu C.S. Chen Y.C. Lu C.H. Hwang J.K. Prediction of protein subcellular localization. Proteins 2006 64 3 643 651 10.1002/prot.21018 16752418
    [Google Scholar]
  42. Hunter S. Apweiler R. Attwood T.K. Bairoch A. Bateman A. Binns D. Bork P. Das U. Daugherty L. Duquenne L. Finn R.D. Gough J. Haft D. Hulo N. Kahn D. Kelly E. Laugraud A. Letunic I. Lonsdale D. Lopez R. Madera M. Maslen J. McAnulla C. McDowall J. Mistry J. Mitchell A. Mulder N. Natale D. Orengo C. Quinn A.F. Selengut J.D. Sigrist C.J.A. Thimma M. Thomas P.D. Valentin F. Wilson D. Wu C.H. Yeats C. InterPro: The integrative protein signature database. Nucleic Acids Res. 2009 37 Database D211 D215 10.1093/nar/gkn785 18940856
    [Google Scholar]
  43. Mohanraj K. Karthikeyan B.S. Vivek-Ananth R.P. Chand R.P.B. Aparna S.R. Mangalapandi P. Samal A. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci. Rep. 2018 8 1 4329 10.1038/s41598‑018‑22631‑z 29531263
    [Google Scholar]
  44. Tian W. Chen C. Lei X. Zhao J. Liang J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018 46 W1 W363 W367 10.1093/nar/gky473 29860391
    [Google Scholar]
  45. Dallakyan S. Olson A.J. Small-molecule library screening by docking with PyRx. Chemical Biology. Methods in Molecular Biology Humana Press New York 2015 243 250
    [Google Scholar]
  46. Raut V.V. Bhandari S.V. A rational approach to anticancer drug design: 2D and 3D- QSAR, molecular docking and prediction of ADME properties using silico studies of thymidine phosphorylase inhibitors. Lett. Drug Des. Discov. 2022 19 153 166
    [Google Scholar]
  47. Yuan S. Chan H.C.S. Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017 7 2 e1298 10.1002/wcms.1298
    [Google Scholar]
  48. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  49. Uniyal A. Mahapatra M.K. Tiwari V. Sandhir R. Kumar R. Targeting SARS-CoV-2 main protease: Structure based virtual screening, in silico ADMET studies and molecular dynamics simulation for identification of potential inhibitors. J. Biomol. Struct. Dyn. 2022 40 8 3609 3625 10.1080/07391102.2020.1848636 33226303
    [Google Scholar]
  50. Salo-Ahen O.M.H. Alanko I. Bhadane R. Bonvin A.M.J.J. Honorato R.V. Hossain S. Juffer A.H. Kabedev A. Lahtela-Kakkonen M. Larsen A.S. Lescrinier E. Marimuthu P. Mirza M.U. Mustafa G. Nunes-Alves A. Pantsar T. Saadabadi A. Singaravelu K. Vanmeert M. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 2020 9 1 71 10.3390/pr9010071
    [Google Scholar]
  51. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  52. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  53. Fu L. Shi S. Yi J. Wang N. He Y. Wu Z. Peng J. Deng Y. Wang W. Wu C. Lyu A. Zeng X. Zhao W. Hou T. Cao D. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024 52 W1 W422 W431 10.1093/nar/gkae236 38572755
    [Google Scholar]
  54. Banerjee P. Kemmler E. Dunkel M. Preissner R. ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024 52 W1 W513 W520 10.1093/nar/gkae303 38647086
    [Google Scholar]
  55. Binkowski T.A. Naghibzadeh S. Liang J. CASTp: computed atlas of surface topography of proteins. Nucleic Acids Res. 2003 31 13 3352 3355 10.1093/nar/gkg512 12824325
    [Google Scholar]
  56. Frémont L. Biological effects of resveratrol. Life Sci. 2000 66 8 663 673 10.1016/S0024‑3205(99)00410‑5 10680575
    [Google Scholar]
  57. Torres P.H.M. Sodero A.C.R. Jofily P. Silva-Jr F.P. Key topics in molecular docking for drug design. Int. J. Mol. Sci. 2019 20 18 4574 10.3390/ijms20184574 31540192
    [Google Scholar]
  58. Burnside K. Lembo A. de los Reyes M. Iliuk A. BinhTran N.T. Connelly J.E. Lin W.J. Schmidt B.Z. Richardson A.R. Fang F.C. Tao W.A. Rajagopal L. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One 2010 5 6 e11071 10.1371/journal.pone.0011071 20552019
    [Google Scholar]
  59. Maffucci I. Hu X. Fumagalli V. Contini A. An efficient implementation of the Nwat-MMGBSA method to rescore docking results in medium-throughput virtual screenings. Front Chem. 2018 6 43 10.3389/fchem.2018.00043 29556494
    [Google Scholar]
  60. Veber D.F. Johnson S.R. Cheng H.Y. Smith B.R. Ward K.W. Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002 45 12 2615 2623 10.1021/jm020017n 12036371
    [Google Scholar]
  61. Prananda A.T. Dalimunthe A. Harahap U. Simanjuntak Y. Peronika E. Karosekali N.E. Hasibuan P.A.Z. Syahputra R.A. Situmorang P.C. Nurkolis F. Phyllanthus emblica: A comprehensive review of its phytochemical composition and pharmacological properties. Front. Pharmacol. 2023 14 1288618 10.3389/fphar.2023.1288618 37954853
    [Google Scholar]
  62. De R. Sarkar A. Ghosh P. Ganguly M. Karmakar B.C. Saha D.R. Halder A. Chowdhury A. Mukhopadhyay A.K. Antimicrobial activity of ellagic acid against Helicobacter pylori isolates from India and during infections in mice. J. Antimicrob. Chemother. 2018 73 6 1595 1603 10.1093/jac/dky079 29566160
    [Google Scholar]
  63. Cota D. Patil D. Antibacterial potential of ellagic acid and gallic acid against IBD bacterial isolates and cytotoxicity against colorectal cancer. Nat. Prod. Res. 2023 37 12 1998 2002 10.1080/14786419.2022.2111560 35968644
    [Google Scholar]
  64. Chen A.Y. Chen Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013 138 4 2099 2107 10.1016/j.foodchem.2012.11.139 23497863
    [Google Scholar]
  65. Periferakis A. Periferakis K. Badarau I.A. Petran E.M. Popa D.C. Caruntu A. Costache R.S. Scheau C. Caruntu C. Costache D.O. Kaempferol: Antimicrobial properties, sources, clinical, and traditional applications. Int. J. Mol. Sci. 2022 23 23 15054 10.3390/ijms232315054 36499380
    [Google Scholar]
  66. del Valle P. García-Armesto M.R. de Arriaga D. González-Donquiles C. Rodríguez-Fernández P. Rúa J. Antimicrobial activity of kaempferol and resveratrol in binary combinations with parabens or propyl gallate against Enterococcus faecalis. Food Control 2016 61 213 220 10.1016/j.foodcont.2015.10.001
    [Google Scholar]
  67. Nguyen T.L.A. Bhattacharya D. Antimicrobial activity of quercetin: An approach to its mechanistic principle. Molecules 2022 27 8 2494 10.3390/molecules27082494 35458691
    [Google Scholar]
  68. Vestergaard M. Ingmer H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents 2019 53 6 716 723 10.1016/j.ijantimicag.2019.02.015 30825504
    [Google Scholar]
  69. Ma D.S.L. Tan L.T.H. Chan K.G. Yap W.H. Pusparajah P. Chuah L.H. Ming L.C. Khan T.M. Lee L.H. Goh B.H. Resveratrol-potential antibacterial agent against foodborne pathogens. Front. Pharmacol. 2018 9 102 10.3389/fphar.2018.00102 29515440
    [Google Scholar]
  70. Abedini E. Khodadadi E. Zeinalzadeh E. Moaddab S.R. Asgharzadeh M. Mehramouz B. Dao S. Samadi Kafil H. A comprehensive study on the antimicrobial properties of resveratrol as an alternative therapy. Evid. Based Complement. Alternat. Med. 2021 2021 1 15 10.1155/2021/8866311 33815561
    [Google Scholar]
  71. Mişe Yonar S. Growth performance, haematological changes, immune response, antioxidant activity and disease resistance in rainbow trout (Oncorhynchus mykiss) fed diet supplemented with ellagic acid. Fish Shellfish Immunol. 2019 95 391 398 10.1016/j.fsi.2019.10.056 31676428
    [Google Scholar]
  72. Hao K. Wang Y. Xu J.H. Nie C. Song S. Yu F. Zhao Z. Kaempferol is a novel antiviral agent against channel catfish virus infection through blocking viral attachment and penetration in vitro. Front. Vet. Sci. 2023 10 1323646 10.3389/fvets.2023.1323646 38111732
    [Google Scholar]
  73. Qi W. Qi W. Xiong D. Long M. Quercetin: Its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy. Molecules 2022 27 19 6545 10.3390/molecules27196545 36235082
    [Google Scholar]
  74. Veiko A.G. Olchowik-Grabarek E. Sekowski S. Roszkowska A. Lapshina E.A. Dobrzynska I. Zamaraeva M. Zavodnik I.B. Antimicrobial activity of quercetin, naringenin and catechin: Flavonoids inhibit Staphylococcus aureus induced hemolysis and modify membranes of bacteria and erythrocytes. Molecules 2023 28 3 1252 10.3390/molecules28031252 36770917
    [Google Scholar]
  75. Siriwong S. Teethaisong Y. Thumanu K. Dunkhunthod B. Eumkeb G. The synergy and mode of action of quercetin plus amoxicillin against amoxicillin-resistant Staphylococcus epidermidis. BMC Pharmacol. Toxicol. 2016 17 1 39 10.1186/s40360‑016‑0083‑8 27491399
    [Google Scholar]
  76. Vipin C. Saptami K. Fida F. Mujeeburahiman M. Rao S.S. Athmika Arun A.B. Rekha P.D. Potential synergistic activity of quercetin with antibiotics against multidrug-resistant clinical strains of Pseudomonas aeruginosa. PLoS One 2020 15 11 e0241304 10.1371/journal.pone.0241304 33156838
    [Google Scholar]
  77. Jaisinghani R.N. Antibacterial properties of quercetin. Microbiol. Res. 2017 8 6877
    [Google Scholar]
  78. Chen Z. Fan D. Pan L. Su C. Ding Y. Lu M. Study of effects of dietary quercetin (Que) on growth performance and disease resistance mechanism of Litopenaeus vannamei. Aquaculture 2023 563 738887 10.1016/j.aquaculture.2022.738887
    [Google Scholar]
  79. Zhang Y. Xiao C. Zhu F. Effects of dietary quercetin on the innate immune response and resistance to white spot syndrome virus in Procambarus clarkii. Fish Shellfish Immunol. 2021 118 205 212 10.1016/j.fsi.2021.09.012 34517138
    [Google Scholar]
  80. Zhai Q. Chang Z. Li J. Li J. Protective effects of combined utilization of quercetin and florfenicol on acute hepatopancreatic necrosis syndrome infected Litopenaeus vannamei. Antibiotics 2022 11 12 1784 10.3390/antibiotics11121784 36551441
    [Google Scholar]
  81. Roy P.K. Park S.H. Song M.G. Park S.Y. Antimicrobial efficacy of quercetin against Vibrio parahaemolyticus biofilm on food surfaces and downregulation of virulence genes. Polymers 2022 14 18 3847 10.3390/polym14183847 36145988
    [Google Scholar]
  82. Majumdar G. Mandal S. Evaluation of broad-spectrum antibacterial efficacy of quercetin by molecular docking, molecular dynamics simulation and in vitro studies. Chemical Physics Impact 2024 8 100501 10.1016/j.chphi.2024.100501
    [Google Scholar]
  83. Hannan M.A. Rahman M.M. Mondal M.N. Chandra D.S. Chowdhury G.A. Islam M.T. Molecular identification of causing vibriosis in shrimp and its herbal remedy. Pol. J. Microbiol. 2019 68 429 4 10.33073/pjm‑2019‑042 31880887
    [Google Scholar]
/content/journals/cad/10.2174/0115734099342492250120114644
Loading
/content/journals/cad/10.2174/0115734099342492250120114644
Loading

Data & Media loading...

Supplements

illustrates the twenty-nine (29) compounds of with their identity, chemical name, molecular weight, chemical formula, two-dimensional (2D) structure, and molecular docking scores.


  • Article Type:
    Research Article
Keywords: ADMET ; Shrimp ; vibriosis ; Vibrio alginolyticus ; Emblica officinalis ; in-silico ; gooseberry ; toxicity ; MD simulation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test