Skip to content
2000
image of Mechanisms Underlying the Attenuating Effects of Bugantang on Liver Fibrosis Based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation

Abstract

Background

Liver fibrosis, a chronic liver disease, threatens people's health, increases the burden of healthcare, and currently lacks effective treatment measures. Bugantang (BGT) is a traditional Chinese herbal prescription from Jin Kui Yi with promising potential for treating liver fibrosis. Despite this potential, the efficacy and mechanism for treating liver fibrosis remain unclear.

Objective

To primarily prove the efficacy, predict the active components of BGT, and explore the mechanism of BGT on liver fibrosis.

Methods

The liver condition of CCL4-induced mice was examined using hematoxylin and eosin staining. The targets and active compounds of BGT were sourced from HERB and TCMSP databases, while the targets related to liver fibrosis were acquired from DisGeNET, Gene Expression Omnibus, and GeneCards databases. The core targets were identified, and the network of protein-protein interactions was established. KEGG and GO analyses were performed on DAVID. Molecular docking and molecular dynamics simulations assessed the active components’ interactions with potential targets.

Results

A total of 215 targets and 152 active compounds were identified for BGT. The network analysis identified kaempferol, quercetin, 2-(2,4-dihydroxyphenyl)-7-hydroxy-4H-chromen-4-one, sitosterol, naringenin, adenosine, plo, and beta-sitosterol as potential key compounds, and AKT1, MMP9, SRC, TNF, ESR1, NF-κB, and PPARG as potential key targets. KEGG and GO analyses revealed that the therapeutic effect of BGT on liver fibrosis may be associated with the PI3K-AKT and MAPK signaling pathways, as well as cell apoptosis, protein phosphorylation, and inflammation. Molecular docking demonstrated high-affinity binding of the identified targets to the active compounds. Additionally, molecular dynamics simulation further confirmed that the bindings of AKT1-beta-sitosterol and MMP9-quercetin exhibited good stability.

Conclusions

The potential of BGT in alleviating liver fibrosis may be attributed to a combination of various active compounds, targets, and pathways. These results could support the use of BGT in treating liver fibrosis and facilitate the development of new drug candidates for this condition.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099335133241030110644
2024-12-02
2025-01-18
Loading full text...

Full text loading...

References

  1. Tsuchida T. Friedman S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017 14 7 397 411 10.1038/nrgastro.2017.38 28487545
    [Google Scholar]
  2. Zhang D. Zhang Y. Sun B. The molecular mechanisms of liver fibrosis and its potential therapy in application. Int. J. Mol. Sci. 2022 23 20 12572 10.3390/ijms232012572 36293428
    [Google Scholar]
  3. Seitz T. Hellerbrand C. Role of fibroblast growth factor signalling in hepatic fibrosis. Liver Int. 2021 41 6 1201 1215 10.1111/liv.14863 33655624
    [Google Scholar]
  4. Asrani S.K. Devarbhavi H. Eaton J. Kamath P.S. Burden of liver diseases in the world. J. Hepatol. 2019 70 1 151 171 10.1016/j.jhep.2018.09.014 30266282
    [Google Scholar]
  5. Huang D.Q. Terrault N.A. Tacke F. Gluud L.L. Arrese M. Bugianesi E. Loomba R. Global epidemiology of cir-rhosis - Aetiology, trends and predictions. Nat. Rev. Gastroenterol. Hepatol. 2023 20 6 388 398 10.1038/s41575‑023‑00759‑2 36977794
    [Google Scholar]
  6. Li H. Advances in anti hepatic fibrotic therapy with Tradi-tional Chinese Medicine herbal formula. J. Ethnopharmacol. 2020 251 112442 10.1016/j.jep.2019.112442 31891799
    [Google Scholar]
  7. Zhao Y. Zhao M. Wang Z. Zhao C. Zhang Y. Wang M. Danggui Shaoyao San: Chemical characterization and inhibition of oxidative stress and inflammation to treat CCl4-induced hepatic fibrosis. J. Ethnopharmacol. 2024 318 (Part A) 116870. 10.1016/j.jep.2023.116870
    [Google Scholar]
  8. Wang Y. Chen Z. Ye R. He Y. Li Y. Qiu X. Protective effect of Jiaweibugan decoction against diabetic peripheral neuropathy. Neural Regen. Res. 2013 8 12 1113 1121 25206405
    [Google Scholar]
  9. Zhou Y. Wu R. Cai F.F. Zhou W.J. Lu Y.Y. Zhang H. Chen Q.L. Su S.B. Xiaoyaosan decoction alleviated rat liver fibrosis via the TGFβ/Smad and Akt/FoxO3 signaling path-ways based on network pharmacology analysis. J. Ethnopharmacol. 2021 264 113021 10.1016/j.jep.2020.113021 32479885
    [Google Scholar]
  10. Esmaeili M.A. Alilou M. Naringenin attenuates CCl4‐induced hepatic inflammation by the activation of an Nrf2‐mediated pathway in rats. Clin. Exp. Pharmacol. Physiol. 2014 41 6 416 422 10.1111/1440‑1681.12230 24684352
    [Google Scholar]
  11. Chen L. Xia S. Wang S. Zhou Y. Wang F. Li Z. Li Y. Kong D. Zhang Z. Shao J. Xu X. Zhang F. Zheng S. Naringenin is a potential immunomodulator for inhibiting liv-er fibrosis by inhibiting the cGAS-STING pathway. J. Clin. Transl. Hepatol. 2023 11 1 26 37 36406329
    [Google Scholar]
  12. Zhang R. Zhao Y. Sun Y. Lu X. Yang X. Isolation, characterization, and hepatoprotective effects of the raffinose family oligosaccharides from Rehmannia glutinosa Libosch. J. Agric. Food Chem. 2013 61 32 7786 7793 10.1021/jf4018492 23879777
    [Google Scholar]
  13. Shao D. Liu X. Wu J. Zhang A. Bai Y. Zhao P. Li J. Identification of the active compounds and functional mecha-nisms of Jinshui Huanxian formula in pulmonary fibrosis by integrating serum pharmacochemistry with network pharma-cology. Phytomedicine 2022 102 154177 10.1016/j.phymed.2022.154177 35636171
    [Google Scholar]
  14. Wang Y. Yuan Y. Wang W. He Y. Zhong H. Zhou X. Chen Y. Cai X.J. Liu L. Mechanisms underlying the thera-peutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking. Comput. Biol. Med. 2022 145 105454 10.1016/j.compbiomed.2022.105454 35367781
    [Google Scholar]
  15. Ma Y. Zhou K. Fan J. Sun S. Traditional Chinese medi-cine: Potential approaches from modern dynamical complexi-ty theories. Front. Med. 2016 10 1 28 32 10.1007/s11684‑016‑0434‑2 26809465
    [Google Scholar]
  16. Fang S. Dong L. Liu L. Guo J. Zhao L. Zhang J. Bu D. Liu X. Huo P. Cao W. Dong Q. Wu J. Zeng X. Wu Y. Zhao Y. HERB: A high-throughput experiment- and ref-erence-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021 49 D1 D1197 D1206 10.1093/nar/gkaa1063 33264402
    [Google Scholar]
  17. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  18. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of pro-tein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  19. Li X. Wei S. Niu S. Ma X. Li H. Jing M. Zhao Y. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huangli-an Jiedu Decoction against sepsis. Comput. Biol. Med. 2022 144 105389 10.1016/j.compbiomed.2022.105389 35303581
    [Google Scholar]
  20. Stelzer G. Rosen N. Plaschkes I. Zimmerman S. Twik M. Fishilevich S. Stein T. I. Nudel R. Lieder I. Mazor Y. Kaplan S. Dahary D. Warshawsky D. Guan-Golan Y. Kohn A. Rappaport N. Safran M. Lancet D. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics 2016 54 1.30.1 1.30.33 10.1002/cpbi.5 27322403
    [Google Scholar]
  21. Piñero J. Ramírez-Anguita J.M. Saüch-Pitarch J. Ronzano F. Centeno E. Sanz F. Furlong L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020 48 D1 D845 D855 31680165
    [Google Scholar]
  22. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: Protein–protein association net-works and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  23. Franz M. Lopes C.T. Fong D. Kucera M. Cheung M. Siper M.C. Huck G. Dong Y. Sumer O. Bader G.D. Cy-toscape.js 2023 update: A graph theory library for visualiza-tion and analysis. Bioinformatics 2023 39 1 btad031 10.1093/bioinformatics/btad031 36645249
    [Google Scholar]
  24. Sherman B.T. Hao M. Qiu J. Jiao X. Baseler M.W. Lane H.C. Imamichi T. Chang W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 50 W1 W216 W221 10.1093/nar/gkac194 35325185
    [Google Scholar]
  25. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. Au-toDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  26. Burley S.K. Bhikadiya C. Bi C. Bittrich S. Chao H. Chen L. Craig P.A. Crichlow G.V. Dalenberg K. Duarte J.M. Dutta S. Fayazi M. Feng Z. Flatt J.W. Ganesan S.J. Ghosh S. Goodsell D.S. Green R.K. Guranovic V. Hen-ry J. Hudson B.P. Khokhriakov I. Lawson C.L. Liang Y. Lowe R. Peisach E. Persikova I. Piehl D.W. Rose Y. Sali A. Segura J. Sekharan M. Shao C. Vallat B. Voigt M. Webb B. Westbrook J.D. Whetstone S. Young J.Y. Zalevsky A. Zardecki C. RCSB Protein Data bank: Tools for visualizing and understanding biological macromolecules in 3D. Protein Sci. 2022 31 12 e4482 10.1002/pro.4482 36281733
    [Google Scholar]
  27. Roehlen N. Crouchet E. Baumert T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells 2020 9 4 875 10.3390/cells9040875 32260126
    [Google Scholar]
  28. Parola M. Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med. 2019 65 37 55 10.1016/j.mam.2018.09.002 30213667
    [Google Scholar]
  29. Horn P. Tacke F. Metabolic reprogramming in liver fibrosis. Cell Metab. 2024 36 7 1439 1455 10.1016/j.cmet.2024.05.003 38823393
    [Google Scholar]
  30. Rani J. Dhull S.B. Rose P.K. Kidwai M.K. Drug-induced liver injury and anti-hepatotoxic effect of herbal compounds: A metabolic mechanism perspective. Phytomedicine 2024 122 155142 10.1016/j.phymed.2023.155142 37913641
    [Google Scholar]
  31. Gilgenkrantz H. Mallat A. Moreau R. Lotersztajn S. Tar-geting cell-intrinsic metabolism for antifibrotic therapy. J. Hepatol. 2021 74 6 1442 1454 10.1016/j.jhep.2021.02.012 33631228
    [Google Scholar]
  32. Shan L. Liu Z. Ci L. Shuai C. Lv X. Li J. Research progress on the anti-hepatic fibrosis action and mechanism of natural products. Int. Immunopharmacol. 2019 75 105765 10.1016/j.intimp.2019.105765 31336335
    [Google Scholar]
  33. Mu M. Zuo S. Wu R.M. Deng K.S. Lu S. Zhu J.J. Zou G.L. Yang J. Cheng M.L. Zhao X.K. Ferulic acid attenu-ates liver fibrosis and hepatic stellate cell activation via inhi-bition of TGF-β/Smad signaling pathway. Drug Des. Devel. Ther. 2018 12 4107 4115 10.2147/DDDT.S186726 30584275
    [Google Scholar]
  34. Xiao X. Hu Q. Deng X. Shi K. Zhang W. Jiang Y. Ma X. Zeng J. Wang X. Old wine in new bottles: Kaempferol is a promising agent for treating the trilogy of liver diseases. Pharmacol. Res. 2022 175 106005 10.1016/j.phrs.2021.106005 34843960
    [Google Scholar]
  35. Xu T. Huang S. Huang Q. Ming Z. Wang M. Li R. Zhao Y. Kaempferol attenuates liver fibrosis by inhibiting activin receptor–like kinase 5. J. Cell. Mol. Med. 2019 23 9 6403 6410 10.1111/jcmm.14528 31273920
    [Google Scholar]
  36. Alkandahri M.Y. Pamungkas B.T. Oktoba Z. Shafirany M.Z. Sulastri L. Arfania M. Anggraeny E.N. Pratiwi A. Astuti F.D. Indriyani, Hepatoprotective effect of kaempferol: A review of the dietary sources, bioavailability, mechanisms of action, and safety. Adv. Pharmacol. Pharm. Sci. ••• 20232023 1387665 10.1155/2023/1387665 36891541
    [Google Scholar]
  37. Alshammari G.M. Al-Qahtani W.H. AlFaris N.A. Alzah-rani N.S. Alkhateeb M.A. Yahya M.A. Quercetin prevents cadmium chloride‐induced hepatic steatosis and fibrosis by downregulating the transcription of miR‐21. Biofactors 2021 47 3 489 505 10.1002/biof.1724 33733575
    [Google Scholar]
  38. a Stoldt A.K. Mielenz M. Nürnberg G. Sauerwein H. Esatbeyoglu T. Wagner A.E. Rimbach G. Starke A. Wolffram S. Metges C.C. Effects of a six-week intraduodenal supplementation with quercetin on liver lipid metabolism and oxidative stress in peripartal dairy cows. 2022 94 5 1913 1923 10.2527/jas.2016‑0338
    [Google Scholar]
  39. b Mukherjee D. Ahmad R. Nayeem S. Molecular inter-play promotes amelioration by quercetin during experimental hepatic inflammation in rodents. Int. J. Biol. Macromol. 2022 222 Pt B 2936 2947 10.1016/j.ijbiomac.2022.10.069 36240886
    [Google Scholar]
  40. Zhao J. Sun Y. Yuan C. Li T. Liang Y. Zou H. Zhang J. Ren L. Quercetin ameliorates hepatic fat accumulation in high-fat diet-induced obese mice via PPARs. Food Funct. 2023 14 3 1674 1684 10.1039/D2FO03013F 36691903
    [Google Scholar]
  41. Guo X. Li Y. Wang W. Wang L. Hu S. Xiao X. Hu C. Dai Y. Zhang Y. Li Z. Li J. Ma X. Zeng J. The con-struction of preclinical evidence for the treatment of liver fi-brosis with quercetin: A systematic review and meta‐analysis. Phytother. Res. 2022 36 10 3774 3791 10.1002/ptr.7569 35918855
    [Google Scholar]
  42. Wang L. Tan A. An X. Xia Y. Xie Y. Quercetin dihy-drate inhibition of cardiac fibrosis induced by angiotensin II in vivo and in vitro. Biomed. Pharmacother. 2020 127 110205 10.1016/j.biopha.2020.110205 32403046
    [Google Scholar]
  43. Nambiar A. Kellogg D. Justice J. Goros M. Gelfond J. Pascual R. Hashmi S. Masternak M. Prata L. LeBrasseur N. Limper A. Kritchevsky S. Musi N. Tchkonia T. Kirkland J. Senolytics dasatinib and quercetin in idiopathic pulmonary fibrosis: Results of a phase I, single-blind, single-center, randomized, placebo-controlled pilot trial on feasibil-ity and tolerability. EBioMedicine 2023 90 104481 10.1016/j.ebiom.2023.104481 36857968
    [Google Scholar]
  44. Wang Q. Wang F. Li X. Ma Z. Jiang D. Quercetin inhib-its the amphiregulin/EGFR signaling‐mediated renal tubular epithelial‐mesenchymal transition and renal fibrosis in ob-structive nephropathy. Phytother. Res. 2023 37 1 111 123 10.1002/ptr.7599 36221860
    [Google Scholar]
  45. Abo-Zaid O.A.R. Moawed F.S.M. Ismail E.S. Farrag M.A. β-sitosterol attenuates high-fat diet-induced hepatic steatosis in rats by modulating lipid metabolism, inflamma-tion and ER stress pathway. BMC Pharmacol. Toxicol. 2023 24 1 31 10.1186/s40360‑023‑00671‑0 37173727
    [Google Scholar]
  46. Liz R. Zanatta L. dos Reis G.O. Horst H. Pizzolatti M.G. Silva F.R.M.B. Fröde T.S. Acute effect of β-sitosterol on calcium uptake mediates anti-inflammatory effect in mu-rine activated neutrophils. J. Pharm. Pharmacol. 2012 65 1 115 122 10.1111/j.2042‑7158.2012.01568.x 23215694
    [Google Scholar]
  47. Devaraj E. Roy A. Royapuram Veeraragavan G. Magesh A. Varikalam Sleeba A. Arivarasu L. Marimuthu Par-asuraman, B. β-Sitosterol attenuates carbon tetrachloride–induced oxidative stress and chronic liver injury in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2020 393 6 1067 1075 10.1007/s00210‑020‑01810‑8 31930431
    [Google Scholar]
  48. Kim K.S. Yang H.J. Lee J.Y. Na Y.C. Kwon S.Y. Kim Y.C. Lee J.H. Jang H.J. Effects of β-sitosterol derived from Artemisia capillaris on the activated human hepatic stellate cells and dimethylnitrosamine-induced mouse liver fibrosis. BMC Complement. Altern. Med. 2014 14 1 363 10.1186/1472‑6882‑14‑363 25262005
    [Google Scholar]
  49. van Loo G. Bertrand M.J.M. Death by TNF: A road to in-flammation. Nat. Rev. Immunol. 2023 23 5 289 303 10.1038/s41577‑022‑00792‑3 36380021
    [Google Scholar]
  50. Black R.A. Rauch C.T. Kozlosky C.J. Peschon J.J. Slack J.L. Wolfson M.F. Castner B.J. Stocking K.L. Reddy P. Srinivasan S. Nelson N. Boiani N. Schooley K.A. Ger-hart M. Davis R. Fitzner J.N. Johnson R.S. Paxton R.J. March C.J. Cerretti D.P. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 1997 385 6618 729 733 10.1038/385729a0 9034190
    [Google Scholar]
  51. Siegmund D. Wajant H. TNF and TNF receptors as thera-peutic targets for rheumatic diseases and beyond. Nat. Rev. Rheumatol. 2023 19 9 576 591 10.1038/s41584‑023‑01002‑7 37542139
    [Google Scholar]
  52. Steele H. Cheng J. Willicut A. Dell G. Breckenridge J. Culberson E. Ghastine A. Tardif V. Herro R. TNF super-family control of tissue remodeling and fibrosis. Front. Immunol. 2023 14 1219907 10.3389/fimmu.2023.1219907 37465675
    [Google Scholar]
  53. Ge M.M. Zhou Y.Q. Tian X.B. Manyande A. Tian Y.K. Ye D.W. Yang H. Src-family protein tyrosine kinases: A promising target for treating chronic pain. Biomed. Pharmacother. 2020 125 110017 10.1016/j.biopha.2020.110017 32106384
    [Google Scholar]
  54. Heldin C.H. Moustakas A. Signaling Receptors for TGF-β Family Members. Cold Spring Harb. Perspect. Biol. 2016 8 8 a022053 10.1101/cshperspect.a022053 27481709
    [Google Scholar]
  55. Huang Y. Wang Z.L. He Y. Ye L.M. Guo W.Q. Zhang J.J. Jiawei Taohe Chengqi Decoction attenuates hepatic fibro-sis by preventing activation of HSCs through regulating Src/ERK/Smad3 signal pathway. J. Ethnopharmacol. 2023 305 116059 10.1016/j.jep.2022.116059 36549368
    [Google Scholar]
  56. Seo H.Y. Lee S.H. Lee J.H. Kang Y.N. Hwang J.S. Park K.G. Kim M.K. Jang B.K. Src inhibition attenuates liver fi-brosis by preventing hepatic stellate cell activation and de-creasing connective tissue growth factor. Cells 2020 9 3 558 10.3390/cells9030558 32120837
    [Google Scholar]
  57. Du G. Wang J. Zhang T. Ding Q. Jia X. Zhao X. Dong J. Yang X. Lu S. Zhang C. Liu Z. Zeng Z. Safadi R. Qi R. Zhao X. Hong Z. Lu Y. Targeting Src family kinase member Fyn by Saracatinib attenuated liver fibrosis in vitro and in vivo. Cell Death Dis. 2020 11 2 118 10.1038/s41419‑020‑2229‑2 32051399
    [Google Scholar]
  58. Wang D. Xu H. Fan L. Ruan W. Song Q. Diao H. He R. Jin Y. Hyperphosphorylation of EGFR/ERK signaling fa-cilitates long-term arsenite-induced hepatocytes epithelial-mesenchymal transition and liver fibrosis in sprague-dawley rats. Ecotoxicol. Environ. Saf. 2023 249 114386 10.1016/j.ecoenv.2022.114386 36508792
    [Google Scholar]
  59. Sabbah D.A. Hajjo R. Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr. Top. Med. Chem. 2020 20 10 815 834 10.2174/1568026620666200303123102 32124699
    [Google Scholar]
  60. Schlessinger J. Ligand-induced, receptor-mediated dimeriza-tion and activation of EGF receptor. Cell 2002 110 6 669 672 10.1016/S0092‑8674(02)00966‑2 12297041
    [Google Scholar]
  61. Shamsan E. Almezgagi M. Gamah M. Khan N. Qasem A. Chuanchuan L. Haining F. The role of PI3k/AKT signal-ing pathway in attenuating liver fibrosis: A comprehensive review. Front. Med. (Lausanne) 2024 11 1389329 10.3389/fmed.2024.1389329 38590313
    [Google Scholar]
  62. Bhushan B. Michalopoulos G.K. Role of epidermal growth factor receptor in liver injury and lipid metabolism: Emerging new roles for an old receptor. Chem. Biol. Interact. 2020 324 109090 10.1016/j.cbi.2020.109090 32283070
    [Google Scholar]
  63. Bano S. Copeland M.A. Stoops J.W. Orr A. Jain S. Paranjpe S. Mooli R.G.R. Ramakrishnan S.K. Locker J. Mars W.M. Michalopoulos G.K. Bhushan B. Hepatocyte-specific epidermal growth factor receptor deletion promotes fibrosis but has no effect on steatosis in fast-food diet model of metabolic dysfunction-associated steatotic liver disease. Cell. Mol. Gastroenterol. Hepatol. 2024 18 4 101380 10.1016/j.jcmgh.2024.101380 39038606
    [Google Scholar]
  64. Xiu A.Y. Ding Q. Li Z. Zhang C.Q. Doxazosin attenuates liver fibrosis by inhibiting autophagy in hepatic stellate cells via activation of the PI3K/Akt/mTOR signaling pathway. Drug Des. Devel. Ther. 2021 15 3643 3659 10.2147/DDDT.S317701 34456560
    [Google Scholar]
  65. Xiang M. Liu T. Tian C. Ma K. Gou J. Huang R. Li S. Li Q. Xu C. Li L. Lee C.H. Zhang Y. Kinsenoside at-tenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway. Pharmacol. Res. 2022 177 106092 10.1016/j.phrs.2022.106092 35066108
    [Google Scholar]
  66. Jiang M. Huang C. Wu Q. Su Y. Wang X. Xuan Z. Wang Y. Xu F. Ge C. Sini San ameliorates CCl4-induced liver fibrosis in mice by inhibiting AKT-mediated hepatocyte apoptosis. J. Ethnopharmacol. 2023 303 115965 10.1016/j.jep.2022.115965 36460296
    [Google Scholar]
  67. Urtasun R. Lopategi A. George J. Leung T.M. Lu Y. Wang X. Ge X. Fiel M.I. Nieto N. Osteopontin, an oxi-dant stress sensitive cytokine, up-regulates collagen-I via in-tegrin αVβ3 engagement and PI3K/pAkt/NFκB signaling. Hepatology 2012 55 2 594 608 10.1002/hep.24701 21953216
    [Google Scholar]
  68. Zhang Z. Shang J. Yang Q. Dai Z. Liang Y. Lai C. Feng T. Zhong D. Zou H. Sun L. Su Y. Yan S. Chen J. Yao Y. Shi Y. Huang X. Exosomes derived from hu-man adipose mesenchymal stem cells ameliorate hepatic fi-brosis by inhibiting PI3K/Akt/mTOR pathway and remodeling choline metabolism. J. Nanobiotechnology 2023 21 1 29 10.1186/s12951‑023‑01788‑4 36698192
    [Google Scholar]
  69. Zeng J. Pei H. Wu H. Chen W. Du R. He Z. Palmatine attenuates LPS‐induced neuroinflammation through the PI3K/Akt/NF‐κB pathway. J. Biochem. Mol. Toxicol. 2024 38 1 e23544 10.1002/jbt.23544 37815058
    [Google Scholar]
  70. Liu X. Tan S. Liu H. Jiang J. Wang X. Li L. Wu B. Hepatocyte-derived MASP1-enriched small extracellular vesi-cles activate HSCs to promote liver fibrosis. Hepatology 2023 77 4 1181 1197 35849032
    [Google Scholar]
  71. Huo S. Li B. Du J. Zhang X. Zhang J. Wang Q. Song M. Li Y. Dibutyl phthalate induces liver fibrosis via p38MAPK/NF-κB/NLRP3-mediated pyroptosis. Sci. Total Environ. 2023 897 165500 10.1016/j.scitotenv.2023.165500 37442457
    [Google Scholar]
  72. Abdelhamid A.M. Youssef M.E. Abd El-Fattah E.E. Gobba N.A. Gaafar A.G.A. Girgis S. Shata A. Hafez A.M. El-Ahwany E. Amin N.A. Shahien M.A. Abd-Eldayem M.A. Abou-Elrous M. Saber S. Blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhances the antifibrotic effect of metformin and augments its AMPK-induced NF-κB inactivation in mice intoxicated with carbon tetrachloride. Life Sci. 2021 286 120070 10.1016/j.lfs.2021.120070 34688695
    [Google Scholar]
  73. Xie G. Jiang R. Wang X. Liu P. Zhao A. Wu Y. Huang F. Liu Z. Rajani C. Zheng X. Qiu J. Zhang X. Zhao S. Bian H. Gao X. Sun B. Jia W. Conjugated secondary 12α-hydroxylated bile acids promote liver fibrogenesis. EBioMedicine 2021 66 103290 10.1016/j.ebiom.2021.103290 33752128
    [Google Scholar]
  74. Wu H. Lin T. Chen Y. Chen F. Zhang S. Pang H. Huang L. Yu C. Wang G. Wu C. Ethanol extract of Rosa laevigata Michx. fruit inhibits inflammatory responses through nf-κb/mapk signaling pathways via AMPK activation in RAW 264.7 macrophages. Molecules 2023 28 6 2813 10.3390/molecules28062813
    [Google Scholar]
  75. Furukawa F. Matsuzaki K. Mori S. Tahashi Y. Yoshida K. Sugano Y. Yamagata H. Matsushita M. Seki T. Inagaki Y. Nishizawa M. Fujisawa J. Inoue K. p38 MAPK mediates fibrogenic signal through smad3 phosphory-lation in rat myofibroblasts. Hepatology 2003 38 4 879 889 10.1002/hep.1840380414 14512875
    [Google Scholar]
/content/journals/cad/10.2174/0115734099335133241030110644
Loading
/content/journals/cad/10.2174/0115734099335133241030110644
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test