Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Introduction

DENV NS2B-NS3 protease inhibitors were designed based upon the reference molecule, 4-(1,3-dioxoisoindolin-2-yl)-N-(4-ethylphenyl) benzenesulfonamide, reported by our team with the aim to optimize lead compound rational approach. Top five best scoring molecules with zinc ids ZINC23504872, ZINC48412318, ZINC00413269, ZINC13998032 and ZINC75249613 bearing ‘pyrimidin-4(3H)-one’ basic scaffold have been identified as a promising candidate against DENV protease enzyme.

Methods

The shape and electrostatic complementary between identified HITs and reference molecules were found to be 0.453, 0.690, 0.680, 0.685 & 0.672 respectively and 0.211, 0.211, 0.441, 0.442, 0.442 and 0.442 respectively. The molecular docking studies suggested that the identified HITs displayed the good interactions with active site residues and lower binding energies. The stability of docked complexes was assessed by MD simulations studies. The RMSD values of protein backbone (1.6779, 3.1563, 3.3634, 3.3893 & 3.0960 Å) and protein backbone RMSF values (1.0126, 1.0834, 1.0890, 0.9974 & 1.0080 Å respectively) for all top five HITs were stable and molecules did not fluctuate from the active pocket during entire 100ns MD run.

Results

The druggability Dscore below 1 indicate the tightly binding of ligand at the active site. Dscore for ZINC23504872 was found to be 1.084 while for the second class of compounds ZINC48412318, ZINC00413269, ZINC13998032 and ZINC75249613, 0.503, 0.484, 0.487 and 0.501 Dscores were observed. ADMET calculations suggested that all five HITs were possessed the drug likeliness properties and did not violate the Lipinski’s rule of five.

Conclusion

Summing up, these generated data suggested that the identified molecules bearing pyrimidin-4(3H)-one would be promising scaffold for DENV protease inhibitors. However, experimental results are needed to prove the obtained results.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099329789240905141013
2024-10-29
2026-02-16
Loading full text...

Full text loading...

References

  1. BhattS. GethingP.W. BradyO.J. MessinaJ.P. FarlowA.W. MoyesC.L. DrakeJ.M. BrownsteinJ.S. HoenA.G. SankohO. MyersM.F. GeorgeD.B. JaenischT. WintG.R.W. SimmonsC.P. ScottT.W. FarrarJ.J. HayS.I. The global distribution and burden of dengue.Nature2013496744650450710.1038/nature12060 23563266
    [Google Scholar]
  2. GuzmanM.G. HalsteadS.B. ArtsobH. BuchyP. FarrarJ. GublerD.J. HunspergerE. KroegerA. MargolisH.S. MartínezE. NathanM.B. PelegrinoJ.L. SimmonsC. YoksanS. PeelingR.W. Dengue: a continuing global threat.Nat. Rev. Microbiol.20108S12S7S1610.1038/nrmicro2460 21079655
    [Google Scholar]
  3. KautnerI. RobinsonM.J. KuhnleU. Dengue virus infection: Epidemiology, pathogenesis, clinical presentation, diagnosis, and prevention.J. Pediatr.1997131451652410.1016/S0022‑3476(97)70054‑4 9386651
    [Google Scholar]
  4. SimmonsC.P. FarrarJ.J. van Vinh ChauN. WillsB. Dengue.N. Engl. J. Med.2012366151423143210.1056/NEJMra1110265 22494122
    [Google Scholar]
  5. Dengue and severe dengue.2021Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
  6. GuyB. NoriegaF. OchiaiR.L. L’azouM. DeloreV. SkipetrovaA. VerdierF. CoudevilleL. SavarinoS. JacksonN. A recombinant live attenuated tetravalent vaccine for the prevention of dengue.Expert Rev. Vaccines201716767168410.1080/14760584.2017.1335201
    [Google Scholar]
  7. BazanJ.F. FletterickR.J. Detection of a trypsin-like serine protease domain in flaviviruses and pestviruses.Virology1989171263763910.1016/0042‑6822(89)90639‑9 2548336
    [Google Scholar]
  8. ChambersT.J. GrakouiA. RiceC.M. Processing of the yellow fever virus nonstructural polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites.J. Virol.199165116042605010.1128/jvi.65.11.6042‑6050.1991 1833562
    [Google Scholar]
  9. FalgoutB. PethelM. ZhangY.M. LaiC.J. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins.J. Virol.19916552467247510.1128/jvi.65.5.2467‑2475.1991 2016768
    [Google Scholar]
  10. PhongW.Y. MorelandN.J. LimS.P. WenD. ParadkarP.N. VasudevanS.G. Dengue protease activity: the structural integrity and interaction of NS2B with NS3 protease and its potential as a drug target.Biosci. Rep.201131539940910.1042/BSR20100142 21329491
    [Google Scholar]
  11. De ClercqE. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV.Int. J. Antimicrob. Agents200933430732010.1016/j.ijantimicag.2008.10.010 19108994
    [Google Scholar]
  12. WylesD.L. Antiviral resistance and the future landscape of hepatitis C virus infection therapy.J. Infect. Dis.2013207S33S3910.1093/infdis/jis761 23390303
    [Google Scholar]
  13. TimiriA.K. SinhaB.N. JayaprakashV. Progress and prospects on DENV protease inhibitors.Eur. J. Med. Chem.201611712514310.1016/j.ejmech.2016.04.008 27092412
    [Google Scholar]
  14. MurtujaS. ShilkarD. SarkarB. SinhaB.N. JayaprakashV. A short survey of dengue protease inhibitor development in the past 6 years (2015–2020) with an emphasis on similarities between DENV and SARS-CoV-2 proteases.Bioorg. Med. Chem.20214911641510.1016/j.bmc.2021.116415 34601454
    [Google Scholar]
  15. ColwellL.J. Statistical and machine learning approaches to predicting protein–ligand interactions.Curr. Opin. Struct. Biol.20184912312810.1016/j.sbi.2018.01.006 29452923
    [Google Scholar]
  16. HeckG.S. PintroV.O. PereiraR.R. Mb LevinN. Supervised machine learning methods applied to predict ligand- binding affinity.Curr. Med. Chem.20172424592470 28641555
    [Google Scholar]
  17. LuoY. WangL. Discovery and development of atp-competitive mtor inhibitors using computational approaches.Curr. Pharm. Des.2017232943214331 28699534
    [Google Scholar]
  18. BadrinarayanP. Narahari SastryG. Virtual high throughput screening in new lead identification.Comb. Chem. High Throughput Screen.2011141084086010.2174/138620711797537102 21843146
    [Google Scholar]
  19. SiddiqueM.U. SinhaB.N. JayaprakashV. Comparative shape and electrostatic study of highly potent and selective CYP1B1 inhibitor: assessment of active site of CYP1B1 by binding mode analysis using site map tool.Indian J. Pharmaceut. Educ. Res.2018Jan1521159165
    [Google Scholar]
  20. UsmanM.S. BharbhuiyaT.K. MondalS. RaniS. KyalC. KumariR. Gene Rep.20181321221910.1016/j.genrep.2018.10.011
    [Google Scholar]
  21. SiddiqueM.U. AnsariA. SinhaB.N. JayaprakashV. Comparative computational studies on selective cytochromep450 1b1 inhibitors.Int. J. Bioauto.202024321322410.7546/ijba.2020.24.3.000537
    [Google Scholar]
  22. BagchiS. AliaU. MohammadF. Mohd SiddiqueM.U. High throughput virtual screening based discovery of dengue protease inhibitor.J. Pharmaceu. Chem.201743354010.14805/jphchem.2017.art92
    [Google Scholar]
  23. BoströmJ. GrantJ.A. FjellströmO. ThelinA. GustafssonD. Potent fibrinolysis inhibitor discovered by shape and electrostatic complementarity to the drug tranexamic acid.J. Med. Chem.20135683273328010.1021/jm301818g 23521080
    [Google Scholar]
  24. BakanA. NevinsN. LakdawalaA.S. BaharI. Druggability assessment of allosteric proteins by dynamics simulations in the presence of probe molecules.J. Chem. Theory Comput.2012872435244710.1021/ct300117j 22798729
    [Google Scholar]
  25. TimiriA.K. SelvarasuS. KesherwaniM. VijayanV. SinhaB.N. DevadasanV. JayaprakashV. Synthesis and molecular modelling studies of novel sulphonamide derivatives as dengue virus 2 protease inhibitors.Bioorg. Chem.201562748210.1016/j.bioorg.2015.07.005 26247308
    [Google Scholar]
  26. IrwinJ.J. ShoichetB.K. ZINC--a free database of commercially available compounds for virtual screening.J. Chem. Inf. Model.200545117718210.1021/ci049714+ 15667143
    [Google Scholar]
  27. Schrödinger Release 2018: LigPrep, Schrödinger, LLC, New York, NY,2018
    [Google Scholar]
  28. SastryG.M. AdzhigireyM. DayT. AnnabhimojuR. ShermanW. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments.J. Comput. Aid Mol. Des.2013273221234
    [Google Scholar]
  29. Schrödinger Release 2018: Schrödinger, LLC, New York, NY,2018
    [Google Scholar]
  30. DhankharP. DalalV. SinghV. TomarS. KumarP Computational guided identification of novel potent inhibitors of N-terminal domain of nucleocapsid protein of severe acute respiratory syndrome coronavirus 2.J. Biomol. Struc. Dynam.2022409, 4084.(99)
    [Google Scholar]
  31. DalalV. KumariR. Screening and identification of natural product‐like compounds as potential antibacterial agents targeting FemC of staphylococcus aureus: an in‐silico approach.ChemistrySelect2022742e20220172810.1002/slct.202201728
    [Google Scholar]
  32. LipinskiC.A. Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  33. SastryG.M. DixonS.L. ShermanW. Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring.J. Chem. Inf. Model.201151102455246610.1021/ci2002704 21870862
    [Google Scholar]
  34. Bitencourt-FerreiraG. De AzevedoW.F. Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes.Biophys. Chem.2018240636910.1016/j.bpc.2018.05.010 29906639
    [Google Scholar]
  35. Morrone XavierM. Sehnem HeckG. Boff de AvilaM. Maria Bernhardt LevinN. Oliveira PintroV. Lemes CarvalhoN. Filgueira de AzevedoW. Computational tool for statistical analysis of docking results and development of scoring functions.Comb. Chem. High Throughput Screen.201619801812 27686428
    [Google Scholar]
  36. RadhakrishnanM.L. TidorB. Specificity in molecular design: a physical framework for probing the determinants of binding specificity and promiscuity in a biological environment.J. Phys. Chem. B200711147134191343510.1021/jp074285e 17979267
    [Google Scholar]
  37. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The Protein Data Bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  38. HalgrenT.A. Identifying and characterizing binding sites and assessing druggability.J. Chem. Inf. Model.200949237738910.1021/ci800324m 19434839
    [Google Scholar]
  39. HalgrenT. New method for fast and accurate binding-site identification and analysis.Chem. Biol. Drug Des.200769214614810.1111/j.1747‑0285.2007.00483.x 17381729
    [Google Scholar]
  40. SchrödingerL.L.C. DE Shaw Research.New York, NY, USASchrödinger2020
    [Google Scholar]
  41. MarkP. NilssonL. Structure and dynamics of the tip3p, spc, and spc/e water models at 298 K.J. Phys. Chem. A2001105439954996010.1021/jp003020w
    [Google Scholar]
  42. JorgensenW.L. MaxwellD.S. Tirado-RivesJ. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids.J. Am. Chem. Soc.199611845112251123610.1021/ja9621760
    [Google Scholar]
  43. GibsonD.A. CarterE.A. Time-reversible multiple time scale ab initio molecular dynamics.J. Phys. Chem.19939751134291343410.1021/j100153a002
    [Google Scholar]
  44. ChengA. MerzK.M. Application of the nose-hoover chain algorithm to the study of protein dynamics.J. Phys. Chem.199610051927193710.1021/jp951968y
    [Google Scholar]
  45. KalibaevaG. FerrarioM. CiccottiG. Constant pressure-constant temperature molecular dynamics: a correct constrained NPT ensemble using the molecular virial.Mol. Phys.2003101676577810.1080/0026897021000044025
    [Google Scholar]
/content/journals/cad/10.2174/0115734099329789240905141013
Loading
/content/journals/cad/10.2174/0115734099329789240905141013
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test