Skip to content
2000
image of Study on the Mechanism of Alpinia officinarum Hance in the Improvement of Insulin Resistance through Network Pharmacology, Molecular Docking and in vitro Experimental Verification

Abstract

Background

Research has elucidated that the pathophysiological underpinnings of non-alcoholic fatty liver disease and type 2 diabetes mellitus are intrinsically linked to insulin resistance (IR). However, there are currently no pharmacotherapies specifically approved for combating IR. Although Hance () can ameliorate diabetes, the detailed molecular mechanism through which it influences IR has not been fully clarified.

Aims

To predict the active components of and determine the mechanism by which affects IR.

Methods

The active compounds and molecular mechanism underlying the improvement of IR by were predicted via network pharmacology and molecular docking. To further substantiate these predictions, an model of IR was induced in HepG2 cells using high glucose concentrations. Cytotoxicity and oxidative stress levels were evaluated using Cell Counting Kit-8, reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) assay kits. The putative molecular mechanisms were corroborated through Western blot and RT-PCR analyses.

Results

Fourteen principal active components in , 133 potential anti-IR gene targets, and the top five targets with degree values were ALB, AKT1, TNF, IL6, and VEGFA. was posited to exert its pharmacological effects on IR through mechanisms involving lipid and atherosclerosis, the AGE-RAGE signaling pathway in diabetic complications, the PI3K-AKT signaling pathway, fluid shear stress, and atherosclerosis. Intriguingly, network pharmacology analysis highlighted (4)-7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (A14) as the most active compound. Molecular docking studies further confirmed that A14 has a strong binding affinity for the main targets of PI3K, AKT, and Nrf2. The experiments demonstrated that A14 significantly diminished the ROS and MDA levels while augmenting the SOD activity. Moreover, A14 was found to elevate the protein expression of PI3K, AKT, Nrf2, and HO-1, and increase the mRNA levels of these targets as well as NQO1.

Conclusion

could play a therapeutic role in IR through multiple components, targets, and pathways. The most active component of responsible for combating IR is A14, which has the ability to regulate oxidative stress in IR-HepG2 cells by activating the PI3K/AKT/Nrf2 pathway. These findings suggest a potential pharmacological intervention strategy for the treatment of IR.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099325919241025023026
2024-11-01
2025-01-29
Loading full text...

Full text loading...

References

  1. Zhou M. Konigsberg W.H. Hao C. Pan Y. Sun J. Wang X. Bioactivity and mechanisms of flavonoids in decreasing insulin resistance. J. Enzyme Inhib. Med. Chem. 2023 38 1 2199168 10.1080/14756366.2023.2199168 37036026
    [Google Scholar]
  2. Sun H. Saeedi P. Karuranga S. Pinkepank M. Ogurtsova K. Duncan B.B. Stein C. Basit A. Chan J.C.N. Mbanya J.C. Pavkov M.E. Ramachandaran A. Wild S.H. James S. Herman W.H. Zhang P. Bommer C. Kuo S. Boyko E.J. Magliano D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022 183 109119 10.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  3. Saeedi P. Petersohn I. Salpea P. Malanda B. Karuranga S. Unwin N. Colagiuri S. Guariguata L. Motala A.A. Ogurtsova K. Shaw J.E. Bright D. Williams R. Committee I.D.F.D.A. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019 157 107843 10.1016/j.diabres.2019.107843 31518657
    [Google Scholar]
  4. Sanyal A.J. Castera L. Wong V.W.S. Noninvasive assessment of liver fibrosis in NAFLD. Clin. Gastroenterol. Hepatol. 2023 21 8 2026 2039 10.1016/j.cgh.2023.03.042 37062495
    [Google Scholar]
  5. Zhao X. An X. Yang C. Sun W. Ji H. Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front. Endocrinol. (Lausanne) 2023 14 1149239 10.3389/fendo.2023.1149239 37056675
    [Google Scholar]
  6. Colosimo S. Mitra S.K. Chaudhury T. Marchesini G. Insulin resistance and metabolic flexibility as drivers of liver and cardiac disease in T2DM. Diabetes Res. Clin. Pract. 2023 206 111016 10.1016/j.diabres.2023.111016 37979728
    [Google Scholar]
  7. En Li Cho E. Ang C.Z. Quek J. Fu C.E. Lim L.K.E. Heng Z.E.Q. Tan D.J.H. Lim W.H. Yong J.N. Zeng R. Chee D. Nah B. Lesmana C.R.A. Bwa A.H. Win K.M. Faulkner C. Aboona M.B. Lim M.C. Syn N. Kulkarni A.V. Suzuki H. Takahashi H. Tamaki N. Wijarnpreecha K. Huang D.Q. Muthiah M. Ng C.H. Loomba R. Global prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus: An updated systematic review and meta-analysis. Gut 2023 72 11 2138 2148 10.1136/gutjnl‑2023‑330110 37491159
    [Google Scholar]
  8. Grander C. Grabherr F. Tilg H. Non-alcoholic fatty liver disease: Pathophysiological concepts and treatment options. Cardiovasc. Res. 2023 119 9 1787 1798 10.1093/cvr/cvad095 37364164
    [Google Scholar]
  9. Kosmas C.E. Bousvarou M.D. Kostara C.E. Papakonstantinou E.J. Salamou E. Guzman E. Insulin resistance and cardiovascular disease. J. Int. Med. Res. 2023 51 3 03000605231164548 10.1177/03000605231164548 36994866
    [Google Scholar]
  10. Li X. Geng-Ji J.J. Quan Y.Y. Qi L.M. Sun Q. Huang Q. Jiang H.M. Sun Z.J. Liu H.M. Xie X. Role of potential bioactive metabolites from traditional Chinese medicine for type 2 diabetes mellitus: An overview. Front. Pharmacol. 2022 13 1023713 10.3389/fphar.2022.1023713 36479195
    [Google Scholar]
  11. Guo C. Huang Q. Wang Y. Yao Y. Li J. Chen J. Wu M. Zhang Z. e M. Qi H. Ji P. Liu Q. Zhao D. Su H. Qi W. Li X. Therapeutic application of natural products: NAD+ metabolism as potential target. Phytomedicine 2023 114 154768 10.1016/j.phymed.2023.154768 36948143
    [Google Scholar]
  12. Yang S. Yang H. Zhang Y. Yao-Shan of traditional Chinese medicine: An old story for metabolic health. Front. Pharmacol. 2023 14 1194026 10.3389/fphar.2023.1194026 37663255
    [Google Scholar]
  13. Zhou Z. Zhang J. You L. Wang T. Wang K. Wang L. Kong X. Gao Y. Sun X. Application of herbs and active ingredients ameliorate non-alcoholic fatty liver disease under the guidance of traditional Chinese medicine. Front. Endocrinol. (Lausanne) 2022 13 1000727 10.3389/fendo.2022.1000727 36204095
    [Google Scholar]
  14. Wang Y. Dai Z. Wang Q. He Y. Peng Y. Wu M. Song H. Ma L. Zhang Y. Li N. Clinical application of traditional Chinese Medicine therapy for type 2 diabetes mellitus: An evidence map. Evid. Based Complement. Alternat. Med. 2022 2022 1 18 10.1155/2022/2755332 35911140
    [Google Scholar]
  15. Lin K. Wang Y. Gong J. Tan Y. Deng T. Wei N. Protective effects of total flavonoids from Alpinia officinarum rhizoma against ethanol-induced gastric ulcer in vivo and in vitro. Pharm. Biol. 2020 58 1 854 862 10.1080/13880209.2020.1803370 32871094
    [Google Scholar]
  16. Zhang X. Xie Z. Chen X. Qiu J. Tan Y. Li X. Li H. Zhang J. Herb-drug interaction in the protective effect of Alpinia officinarum against gastric injury induced by indomethacin based on pharmacokinetic, tissue distribution and excretion studies in rats. J. Pharm. Anal. 2021 11 2 200 209 10.1016/j.jpha.2020.05.009 34012696
    [Google Scholar]
  17. Abubakar I.B. Malami I. Yahaya Y. Sule S.M. A review on the ethnomedicinal uses, phytochemistry and pharmacology of Alpinia officinarum Hance. J. Ethnopharmacol. 2018 224 45 62 10.1016/j.jep.2018.05.027 29803568
    [Google Scholar]
  18. Gong J. Zhang Z. Zhang X. Chen F. Tan Y. Li H. Jiang J. Zhang J. Effects and possible mechanisms of Alpinia officinarum ethanol extract on indomethacin-induced gastric injury in rats. Pharm. Biol. 2018 56 1 294 301 10.1080/13880209.2018.1450426 29781354
    [Google Scholar]
  19. Honmore V.S. Kandhare A.D. Kadam P.P. Khedkar V.M. Sarkar D. Bodhankar S.L. Zanwar A.A. Rojatkar S.R. Natu A.D. Isolates of Alpinia officinarum Hance as COX-2 inhibitors: Evidence from anti-inflammatory, antioxidant and molecular docking studies. Int. Immunopharmacol. 2016 33 8 17 10.1016/j.intimp.2016.01.024 26849772
    [Google Scholar]
  20. Sun D.J. Zhu L.J. Zhao Y.Q. Zhen Y.Q. Zhang L. Lin C.C. Chen L.X. Diarylheptanoid: A privileged structure in drug discovery. Fitoterapia 2020 142 104490 10.1016/j.fitote.2020.104490 32017968
    [Google Scholar]
  21. Wang C. Chao I. Qin Y. Zhang W. Zhao J. Zhang Q. Li S. Comparison for quantification of eight components in Alpinia officinarum Hance by using high-performance liquid chromatography coupled with diode array detector and charged aerosol detector with individual and substitute reference compound. J. Pharm. Biomed. Anal. 2022 210 114545 10.1016/j.jpba.2021.114545 34968996
    [Google Scholar]
  22. Elgazar A.A. Selim N.M. Abdel-Hamid N.M. El-Magd M.A. El Hefnawy H.M. Isolates from Alpinia officinarum Hance attenuate LPS‐induced inflammation in HepG2: Evidence from in silico and in vitro studies. Phytother. Res. 2018 32 7 1273 1288 10.1002/ptr.6056 29468851
    [Google Scholar]
  23. Liu D. Liu Y.W. Guan F.Q. Liang J.Y. New cytotoxic diarylheptanoids from the rhizomes of Alpinia officinarum Hance. Fitoterapia 2014 96 76 80 10.1016/j.fitote.2014.04.008 24752140
    [Google Scholar]
  24. Ye Q. Tan X. Zhu L. Zhao Z. Yang D. Yin S. Wang D. Isolation and purification of diarylheptanoids from Alpinia officinarum Hance by high-speed counter-current chromatography. Se Pu 2013 30 3 327 331 10.3724/SP.J.1123.2011.11021 22715702
    [Google Scholar]
  25. Honmore V.S. Kandhare A.D. Kadam P.P. Khedkar V.M. Natu A.D. Rojatkar S.R. Bodhankar S.L. Diarylheptanoid, a constituent isolated from methanol extract of Alpinia officinarum attenuates TNF-α level in Freund’s complete adjuvant-induced arthritis in rats. J. Ethnopharmacol. 2019 229 233 245 10.1016/j.jep.2018.10.019 30336303
    [Google Scholar]
  26. Ting-ya L. Qi C. Xiao-ge Z. Feng W. Yi H. Qing Z. Min-yi T. Chemical constituents and in vitro pharmacological activities of essential oil from rhizome of Alpinia galanga (L.) Willd. J. Nat. Prod. Res. Dev. 2020 32 11 1866
    [Google Scholar]
  27. Zhao X. Chen X. Tan X. Bi K. Simultaneous determination of alpha-pinene, beta-pinene, eucalyptol and alpha-terpineolin in essential oil from Alpinia officinarum Hance by GC. Zhongguo Zhongyao Zazhi 2009 34 21 2751 2753 20209907
    [Google Scholar]
  28. Zhang X. Li X. Li H. Zhou M. Zhang Y. Lai W. Zheng X. Bai F. Zhang J. Investigation of the potential mechanism of Alpinia officinarum Hance in improving type 2 diabetes mellitus based on network pharmacology and molecular docking. Evid. Based Complement. Alternat. Med. 2023 2023 1 4934711 10.1155/2023/4934711 36818229
    [Google Scholar]
  29. Zhang P. Zhang D. Zhou W. Wang L. Wang B. Zhang T. Li S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform. 2023 25 1 bbad518 10.1093/bib/bbad518 38197310
    [Google Scholar]
  30. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  31. Wang X. Shen Y. Wang S. Li S. Zhang W. Liu X. Lai L. Pei J. Li H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017 45 W1 W356 W360 10.1093/nar/gkx374 28472422
    [Google Scholar]
  32. Wang X. Pan C. Gong J. Liu X. Li H. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J. Chem. Inf. Model. 2016 56 6 1175 1183 10.1021/acs.jcim.5b00690 27187084
    [Google Scholar]
  33. Stelzer G. Rosen N. Plaschkes I. Zimmerman S. Twik M. Fishilevich S. Stein T. I. Nudel R. Lieder I. Mazor Y. Kaplan S. Dahary D. Warshawsky D. Guan-Golan Y. Kohn A. Rappaport N. Safran M. Lancet D. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics 54 1.30.1 1.30.33 2016 10.1002/cpbi.5 27322403
    [Google Scholar]
  34. Bateman A. Martin M-J. Orchard S. Magrane M. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. Bye-A-Jee H. Cukura A. Denny P. Dogan T. Ebenezer T.G. Fan J. Garmiri P. da Costa Gonzales L.J. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Joshi V. Jyothi D. Kandasaamy S. Lock A. Luciani A. Lugaric M. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Mishra A. Moulang K. Nightingale A. Pundir S. Qi G. Raj S. Raposo P. Rice D.L. Saidi R. Santos R. Speretta E. Stephenson J. Totoo P. Turner E. Tyagi N. Vasudev P. Warner K. Watkins X. Zaru R. Zellner H. Bridge A.J. Aimo L. Argoud-Puy G. Auchincloss A.H. Axelsen K.B. Bansal P. Baratin D. Batista Neto T.M. Blatter M-C. Bolleman J.T. Boutet E. Breuza L. Gil B.C. Casals-Casas C. Echioukh K.C. Coudert E. Cuche B. de Castro E. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gaudet P. Gehant S. Gerritsen V. Gos A. Gruaz N. Hulo C. Hyka-Nouspikel N. Jungo F. Kerhornou A. Le Mercier P. Lieberherr D. Masson P. Morgat A. Muthukrishnan V. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Poux S. Pozzato M. Pruess M. Redaschi N. Rivoire C. Sigrist C.J.A. Sonesson K. Sundaram S. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Zhang J. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res. 2023 51 D1 D523 D531 10.1093/nar/gkac1052 36408920
    [Google Scholar]
  35. Coudert E. Gehant S. de Castro E. Pozzato M. Baratin D. Neto T. Sigrist C.J.A. Redaschi N. Bridge A. Bridge A.J. Aimo L. Argoud-Puy G. Auchincloss A.H. Axelsen K.B. Bansal P. Baratin D. Neto T.M.B. Blatter M-C. Bolleman J.T. Boutet E. Breuza L. Gil B.C. Casals-Casas C. Echioukh K.C. Coudert E. Cuche B. de Castro E. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gaudet P. Gehant S. Gerritsen V. Gos A. Gruaz N. Hulo C. Hyka-Nouspikel N. Jungo F. Kerhornou A. Le Mercier P. Lieberherr D. Masson P. Morgat A. Muthukrishnan V. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Poux S. Pozzato M. Pruess M. Redaschi N. Rivoire C. Sigrist C.J.A. Sonesson K. Sundaram S. Bateman A. Martin M-J. Orchard S. Magrane M. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. A-Jee H.B. Cukura A. Denny P. Dogan T. Ebenezer T.G. Fan J. Garmiri P. da Costa Gonzales L.J. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Joshi V. Jyothi D. Kandasaamy S. Lock A. Luciani A. Lugaric M. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Mishra A. Moulang K. Nightingale A. Pundir S. Qi G. Raj S. Raposo P. Rice D.L. Saidi R. Santos R. Speretta E. Stephenson J. Totoo P. Turner E. Tyagi N. Vasudev P. Warner K. Watkins X. Zaru R. Zellner H. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics 2023 39 1 btac793 10.1093/bioinformatics/btac793 36484697
    [Google Scholar]
  36. Bateman A. Martin M-J. Orchard S. Magrane M. Agivetova R. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. Bursteinas B. Bye-A-Jee H. Coetzee R. Cukura A. Da Silva A. Denny P. Dogan T. Ebenezer T.G. Fan J. Castro L.G. Garmiri P. Georghiou G. Gonzales L. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Jokinen P. Joshi V. Jyothi D. Lock A. Lopez R. Luciani A. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Menchi M. Mishra A. Moulang K. Nightingale A. Oliveira C.S. Pundir S. Qi G. Raj S. Rice D. Lopez M.R. Saidi R. Sampson J. Sawford T. Speretta E. Turner E. Tyagi N. Vasudev P. Volynkin V. Warner K. Watkins X. Zaru R. Zellner H. Bridge A. Poux S. Redaschi N. Aimo L. Argoud-Puy G. Auchincloss A. Axelsen K. Bansal P. Baratin D. Blatter M-C. Bolleman J. Boutet E. Breuza L. Casals-Casas C. de Castro E. Echioukh K.C. Coudert E. Cuche B. Doche M. Dornevil D. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gehant S. Gerritsen V. Gos A. Gruaz-Gumowski N. Hinz U. Hulo C. Hyka-Nouspikel N. Jungo F. Keller G. Kerhornou A. Lara V. Le Mercier P. Lieberherr D. Lombardot T. Martin X. Masson P. Morgat A. Neto T.B. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Pozzato M. Pruess M. Rivoire C. Sigrist C. Sonesson K. Stutz A. Sundaram S. Tognolli M. Verbregue L. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Garavelli J.S. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Yeh L-S. Zhang J. Ruch P. Teodoro D. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021 49 D1 D480 D489 10.1093/nar/gkaa1100 33237286
    [Google Scholar]
  37. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  38. Szklarczyk D. Gable A.L. Nastou K.C. Lyon D. Kirsch R. Pyysalo S. Doncheva N.T. Legeay M. Fang T. Bork P. Jensen L.J. von Mering C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 49 D1 D605 D612 10.1093/nar/gkaa1074 33237311
    [Google Scholar]
  39. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  40. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  41. Otasek D. Morris J.H. Bouças J. Pico A.R. Demchak B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol. 2019 20 1 185 10.1186/s13059‑019‑1758‑4 31477170
    [Google Scholar]
  42. Huang D.W. Sherman B.T. Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009 4 1 44 57 10.1038/nprot.2008.211 19131956
    [Google Scholar]
  43. Zhou Y. Zhou B. Pache L. Chang M. Khodabakhshi A.H. Tanaseichuk O. Benner C. Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019 10 1 1523 10.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  44. Tang D. Chen M. Huang X. Zhang G. Zeng L. Zhang G. Wu S. Wang Y. SRplot: A free online platform for data visualization and graphing. PLoS One 2023 18 11 e0294236 10.1371/journal.pone.0294236 37943830
    [Google Scholar]
  45. Furet P. Guagnano V. Fairhurst R.A. Imbach-Weese P. Bruce I. Knapp M. Fritsch C. Blasco F. Blanz J. Aichholz R. Hamon J. Fabbro D. Caravatti G. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg. Med. Chem. Lett. 2013 23 13 3741 3748 10.1016/j.bmcl.2013.05.007 23726034
    [Google Scholar]
  46. Wu W.I. Voegtli W.C. Sturgis H.L. Dizon F.P. Vigers G.P.A. Brandhuber B.J. Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLoS One 2010 5 9 e12913 10.1371/journal.pone.0012913 20886116
    [Google Scholar]
  47. Hörer S. Reinert D. Ostmann K. Hoevels Y. Nar H. Crystal-contact engineering to obtain a crystal form of the Kelch domain of human Keap1 suitable for ligand-soaking experiments. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2013 69 6 592 596 10.1107/S174430911301124X 23722832
    [Google Scholar]
  48. Burley S.K. Bhikadiya C. Bi C. Bittrich S. Chao H. Chen L. Craig P.A. Crichlow G.V. Dalenberg K. Duarte J.M. Dutta S. Fayazi M. Feng Z. Flatt J.W. Ganesan S. Ghosh S. Goodsell D.S. Green R.K. Guranovic V. Henry J. Hudson B.P. Khokhriakov I. Lawson C.L. Liang Y. Lowe R. Peisach E. Persikova I. Piehl D.W. Rose Y. Sali A. Segura J. Sekharan M. Shao C. Vallat B. Voigt M. Webb B. Westbrook J.D. Whetstone S. Young J.Y. Zalevsky A. Zardecki C. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023 51 D1 D488 D508 10.1093/nar/gkac1077 36420884
    [Google Scholar]
  49. Fu Y. Sun Y.N. Yi K.H. Li M.Q. Cao H.F. Li J.Z. Ye F. 3D pharmacophore-based virtual screening and docking approaches toward the discovery of novel HPPD inhibitors. Molecules 2017 22 6 959 10.3390/molecules22060959 28598377
    [Google Scholar]
  50. Yao Y. Li R. Liu X. Yang F. Yang Y. Li X. Shi X. Yuan T. Fang L. Du G. Jiao X. Xie P. Discovery of novel N-substituted prolinamido indazoles as potent Rho Kinase inhibitors and vasorelaxation agents. Molecules 2017 22 10 1766 10.3390/molecules22101766 29048389
    [Google Scholar]
  51. Cheng B. Li T. Li F. Study on the multitarget mechanism of alliin activating autophagy based on network pharmacology and molecular docking. J. Cell. Mol. Med. 2022 26 22 5590 5601 10.1111/jcmm.17573 36271672
    [Google Scholar]
  52. Li X. Wen H. Zhang Y. Liu A. Zhang X. Fu M. Pan Y. Xu J. Zhang J. DPHB, a diarylheptane from Alpinia officinarum Hance, ameliorates insulin resistance: A network pharmacology and in vitro study. Front. Pharmacol. 2022 13 956812 10.3389/fphar.2022.956812 36120365
    [Google Scholar]
  53. Li X. Zhou M. Zhu Z. Wang Z. Zhang X. Lu L. Xie Z. Wang B. Pan Y. Zhang J. Xu J. Kaempferol from Alpinia officinarum hance induces G2/M cell cycle arrest in hepatocellular carcinoma cells by regulating the ATM/CHEK2/KNL1 pathway. J. Ethnopharmacol. 2024 333 118430 10.1016/j.jep.2024.118430 38857680
    [Google Scholar]
  54. Zheng X. Xue Q. Wang Y. Lu L. Pan Y. Xu J. Zhang J. A. officinarum Hance – P. cablin (Blanco) Benth drug pair improves oxidative stress, intracellular Ca2+ concentrations and apoptosis by inhibiting the AGE/RAGE axis to ameliorate diabetic gastroparesis: In vitro and in vivo studies. J. Ethnopharmacol. 2024 324 117832 10.1016/j.jep.2024.117832 38280660
    [Google Scholar]
  55. Yudhani R.D. Sari Y. Nugrahaningsih D.A.A. Sholikhah E.N. Rochmanti M. Purba A.K.R. Khotimah H. Nugrahenny D. Mustofa M. In vitro insulin resistance model: A recent update. J. Obes. 2023 2023 1 13 10.1155/2023/1964732 36714242
    [Google Scholar]
  56. Fan X. Jiao G. Pang T. Wen T. He Z. Han J. Zhang F. Chen W. Ameliorative effects of mangiferin derivative TPX on insulin resistance via PI3K/AKT and AMPK signaling pathways in human HepG2 and HL-7702 hepatocytes. Phytomedicine 2023 114 154740 10.1016/j.phymed.2023.154740 36965373
    [Google Scholar]
  57. Li X. Zhou M. Chen W. Sun J. Zhao Y. Wang G. Wang B. Pan Y. Zhang J. Xu J. Integrating network pharmacology, bioinformatics, and experimental validation to unveil the molecular targets and mechanisms of galangin for treating hepatocellular carcinoma. BMC Complement. Med. Ther. 2024 24 1 208 10.1186/s12906‑024‑04518‑x 38816744
    [Google Scholar]
  58. Xia T. Duan W. Zhang Z. Fang B. Zhang B. Xu B. de la Cruz C.B.V. El-Seedi H. Simal-Gandara J. Wang S. Wang M. Xiao J. Polyphenol-rich extract of Zhenjiang aromatic vinegar ameliorates high glucose-induced insulin resistance by regulating JNK-IRS-1 and PI3K/Akt signaling pathways. Food Chem. 2021 335 127513 10.1016/j.foodchem.2020.127513 32745838
    [Google Scholar]
  59. Xia D.Z. Yu X.F. Wang H.M. Ren Q.Y. Chen B.M. Anti-obesity and hypolipidemic effects of ethanolic extract from Alpinia officinarum Hance (Zingiberaceae) in rats fed high-fat diet. J. Med. Food 2010 13 4 785 791 10.1089/jmf.2009.1235 20482258
    [Google Scholar]
  60. Jung C.H. Jang S.J. Ahn J. Gwon S.Y. Jeon T.I. Kim T.W. Ha T.Y. Alpinia officinarum inhibits adipocyte differentiation and high-fat diet-induced obesity in mice through regulation of adipogenesis and lipogenesis. J. Med. Food 2012 15 11 959 967 10.1089/jmf.2012.2286 23126661
    [Google Scholar]
  61. Zhang X. Liu A. Zhang Y. Zhou M. Li X. Fu M. Pan Y. Xu J. Zhang J. A diarylheptanoid compound from Alpinia officinarum Hance ameliorates high glucose-induced insulin resistance by regulating PI3K/AKT-Nrf2-GSK3β signaling pathways in HepG2 cells. J. Ethnopharmacol. 2022 295 115397 10.1016/j.jep.2022.115397 35605918
    [Google Scholar]
  62. Zhang X. Zhang Y. Zhou M. Xie Y. Dong X. Bai F. Zhang J. DPHC from Alpinia officinarum ameliorates oxidative stress and insulin resistance via activation of Nrf2/ARE Pathway in db/db mice and high glucose-treated HepG2 cells. Front. Pharmacol. 2022 12 792977 10.3389/fphar.2021.792977 35111058
    [Google Scholar]
  63. Sun Y. Wang J. Guo X. Zhu N. Niu L. Ding X. Xie Z. Chen X. Yang F. Oleic acid and eicosapentaenoic acid reverse palmitic acid-induced insulin resistance in human HepG2 cells via the reactive oxygen species/ JUN pathway. Genomics Proteomics Bioinformatics 2021 19 5 754 771 10.1016/j.gpb.2019.06.005 33631425
    [Google Scholar]
  64. Ren H. Hu F. Wang D. Kang X. Feng X. Zhang L. Zhou B. Liu S. Yuan G. Sirtuin 2 prevents liver steatosis and metabolic disorders by deacetylation of hepatocyte nuclear factor 4α. Hepatology 2021 74 2 723 740 10.1002/hep.31773 33636024
    [Google Scholar]
  65. An Y. Xu B. Wan S. Ma X. Long Y. Xu Y. Jiang Z. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc. Diabetol. 2023 22 1 237 10.1186/s12933‑023‑01965‑7 37660030
    [Google Scholar]
  66. Xourafa G. Korbmacher M. Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2024 20 1 27 49 10.1038/s41574‑023‑00898‑1 37845351
    [Google Scholar]
  67. González-Domínguez Á. Belmonte T. Domínguez-Riscart J. Ruiz-Ocaña P. Muela-Zarzuela I. Saez-Benito A. Montañez-Martínez R. Mateos R.M. Lechuga-Sancho A.M. Altered insulin secretion dynamics relate to oxidative stress and inflammasome activation in children with obesity and insulin resistance. J. Transl. Med. 2023 21 1 559 10.1186/s12967‑023‑04337‑7 37599368
    [Google Scholar]
  68. Zhang J. Wang X. Vikash V. Ye Q. Wu D. Liu Y. Dong W. ROS and ROS‐mediated cellular signaling. Oxid. Med. Cell. Longev. 2016 2016 1 4350965 10.1155/2016/4350965 26998193
    [Google Scholar]
  69. Bhatti J.S. Sehrawat A. Mishra J. Sidhu I.S. Navik U. Khullar N. Kumar S. Bhatti G.K. Reddy P.H. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic. Biol. Med. 2022 184 114 134 10.1016/j.freeradbiomed.2022.03.019 35398495
    [Google Scholar]
  70. Zhang Y. Wang H. Zhang L. Yuan Y. Yu D. Codonopsis lanceolata polysaccharide CLPS alleviates high fat/high sucrose diet-induced insulin resistance via anti-oxidative stress. Int. J. Biol. Macromol. 2020 145 944 949 10.1016/j.ijbiomac.2019.09.185 31669275
    [Google Scholar]
  71. Jomova K. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Valko M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024 98 5 1323 1367 10.1007/s00204‑024‑03696‑4 38483584
    [Google Scholar]
  72. Zhang J. Lv W. Zhang G. Zeng M. Cao W. Su J. Cao K. Liu J. Nuclear factor erythroid 2 related factor 2 and mitochondria form a mutually regulating circuit in the prevention and treatment of metabolic syndrome. Antioxid. Redox Signal. 2024 10.1089/ars.2023.0339 38183629
    [Google Scholar]
  73. Tan Y. Zhou C. Miao L. Zhang X. Khan H. Xu B. Cheang W.S. 3,4′,5-Trimethoxy- trans-stilbene ameliorates hepatic insulin resistance and oxidative stress in diabetic obese mice through insulin and Nrf2 signaling pathways. Food Funct. 2024 15 6 2996 3007 10.1039/D3FO04158A 38411214
    [Google Scholar]
  74. Wang J. He X. Lv S. Notoginsenoside‐R1 ameliorates palmitic acid‐induced insulin resistance and oxidative stress in HUVEC via Nrf2/ARE pathway. Food Sci. Nutr. 2023 11 12 7791 7802 10.1002/fsn3.3696 38107110
    [Google Scholar]
  75. Zhang S. Zhang S. Zhang Y. Wang H. Chen Y. Lu H. Activation of NRF2 by epiberberine improves oxidative stress and insulin resistance in T2DM mice and IR-HepG2 cells in an AMPK dependent manner. J. Ethnopharmacol. 2024 327 117931 10.1016/j.jep.2024.117931 38382657
    [Google Scholar]
  76. Qiang G. Xue S. Yang J.J. Du G. Pang X. Li X. Goswami D. Griffin P.R. Ortlund E.A. Chan C.B. Ye K. Identification of a small molecular insulin receptor agonist with potent antidiabetes activity. Diabetes 2014 63 4 1394 1409 10.2337/db13‑0334 24651808
    [Google Scholar]
  77. Bloch-Damti A. Potashnik R. Gual P. Le Marchand-Brustel Y. Tanti J.F. Rudich A. Bashan N. Differential effects of IRS1 phosphorylated on Ser307 or Ser632 in the induction of insulin resistance by oxidative stress. Diabetologia 2006 49 10 2463 2473 10.1007/s00125‑006‑0349‑6 16896943
    [Google Scholar]
  78. Gao D. Nong S. Huang X. Lu Y. Zhao H. Lin Y. Man Y. Wang S. Yang J. Li J. The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. J. Biol. Chem. 2010 285 39 29965 29973 10.1074/jbc.M110.128694 20647313
    [Google Scholar]
  79. Guo X. Yin X. Liu Z. Wang J. Non-Alcoholic Fatty Liver Disease (NAFLD) pathogenesis and natural products for prevention and treatment. Int. J. Mol. Sci. 2022 23 24 15489 10.3390/ijms232415489 36555127
    [Google Scholar]
  80. Chen Z. Tian R. She Z. Cai J. Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 2020 152 116 141 10.1016/j.freeradbiomed.2020.02.025 32156524
    [Google Scholar]
  81. Gorrini C. Harris I.S. Mak T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013 12 12 931 947 10.1038/nrd4002 24287781
    [Google Scholar]
/content/journals/cad/10.2174/0115734099325919241025023026
Loading
/content/journals/cad/10.2174/0115734099325919241025023026
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test