Skip to content
2000
image of Network Pharmacology and Experimental Validation to Reveal the Pharmacological Mechanisms of Gynostemma pentaphylla against Acute Pharyngitis

Abstract

Background

Acute pharyngitis (AP) is a prevalent ailment. Gynostemma pentaphylla (GP), a traditional Chinese medicine (TCM), may treat AP due to its anti-tumor and anti-inflammatory properties, but this remains unexplored.

Methods

This study utilized the TCMSP and Swiss Target Prediction databases to analyze GP's chemical composition and target proteins. The Genecards database was used to identify targets relevant to AP. A PPI network diagram of drug-disease intersection targets was created using the STRING database, and Cytoscape was utilized to create a network visualization diagram of “GP active components-targets-AP” in order to determine key active components of GP in treating AP. Gene ontology (GO) and biological pathway (KEGG) enrichment analyses were conducted on targets in the David database. Molecular docking verification of key targets and components was performed using AutoDock Vina software. In animal experiments, a rat model of AP was induced by a 15% concentrated ammonia solution, and HE staining was conducted to observe histopathological changes in the rat pharynx after intragastric administration of Houyanqing. ELISA was used to detect expression levels of serum interleukin-1-beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF-α).

Results

A total of 18 active ingredients were screened from GP, among which Ruvoside _ qt, Rhamnazin, 3 ' -methyleriodictyol, and sitosterol were five key active ingredients. The key targets involved EGFR, STAT3, MAPK3, SRC, AKT1, . KEGG enrichment analysis showed that GP mainly acted on Pathways in cancer, P13K-AKT signaling Pathways, JAK-STAT signaling pathways, and other signaling pathways. Molecular docking results showed that four core compounds and five key targets met the energy matching. Animal experiments showed that compared with the normal group, the expression levels of IL-1β, IL-6, and TNF-α in the AP model group were significantly up-regulated ( < 0.05). In addition, compared with the model group, intragastric administration of the dexamethasone group and gypenosides group could alleviate the up-regulation of inflammatory factors in model rats, and the levels of IL-1β, IL-6, and TNF-α were decreased ( < 0.05).

Conclusion

This study predicted the possible targets of GP in the treatment of AP through network pharmacology. The results suggest that gypenosides may inhibit the expression of inflammatory factors by regulating Pathways in cancer, P13K-AKT, and JAK-STAT signaling pathways to treat AP.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099324793250116133159
2025-02-04
2025-05-24
Loading full text...

Full text loading...

References

  1. Ferretti J.J. Stevens D.L. Fischetti V.A. Streptococcus pyogenes: Basic Biology to Clinical Manifestations. Oklahoma City, OK University of Oklahoma Health Sciences Center 2022
    [Google Scholar]
  2. Niska R. Bhuiya F. Xu J. National Hospital Ambulatory Medical Care Survey: 2007 emergency department summary. Natl. Health Stat. Rep. 2010 26 1 31 20726217
    [Google Scholar]
  3. Schappert S.M. Rechtsteiner E.A. Ambulatory medical care utilization estimates for 2007. Vital Health Stat. 13 2011 169 1 38 21614897
    [Google Scholar]
  4. Wurster V.M. Carlucci J.G. Feder H.M. Jr Edwards K.M. Long-term follow-up of children with periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis syndrome. J. Pediatr. 2011 159 6 958 964 10.1016/j.jpeds.2011.06.004 21798555
    [Google Scholar]
  5. Krüger K. Töpfner N. Berner R. Windfuhr J. Oltrogge J.H. Guideline group Clinical practice guideline: Sore throat. Dtsch. Arztebl. Int. 2021 118 11 188 194 33602392
    [Google Scholar]
  6. Priya M.G.R. Manisha J. Lazar L.P.M. Rathore S.S. Solomon V.R. Computer-aided drug discovery approaches in the identification of anticancer drugs from natural products: A review. Curr Comput Aided Drug Des. 2024 21 1 1 14 10.2174/0115734099283410240406064042 38698753
    [Google Scholar]
  7. Li K. Ma C. Li H. Dev S. He J. Qu X. Medicinal value and potential therapeutic mechanisms of Gynostemma pentaphyllum (Thunb.) makino and its derivatives: An overview. Curr. Top. Med. Chem. 2020 19 31 2855 2867 10.2174/1568026619666191114104718 31724506
    [Google Scholar]
  8. Shen C.Y. Jiang J.G. Shi M.M. Yang H.L. Wei H. Zhu W. Comparison of the effects and inhibitory pathways of the constituents from Gynostemma pentaphyllum against LPS-induced inflammatory response. J. Agric. Food Chem. 2018 66 43 11337 11346 10.1021/acs.jafc.8b03903 30301351
    [Google Scholar]
  9. Tan H. Zhang M. Xu L. Zhang X. Zhao Y. Gypensapogenin H suppresses tumor growth and cell migration in triple-negative breast cancer by regulating PI3K/AKT/NF-κB/MMP-9 signaling pathway. Bioorg. Chem. 2022 126 105913 10.1016/j.bioorg.2022.105913 35671647
    [Google Scholar]
  10. Li X. Liu H. Lv C. Du J. Lian F. Zhang S. Wang Z. Zeng Y. Gypenoside-induced apoptosis via the PI3K/AKT/mTOR signaling pathway in bladder cancer. BioMed Res. Int. 2022 2022 1 15 10.1155/2022/9304552 35402614
    [Google Scholar]
  11. Zhang H. Chen X. Zong B. Yuan H. Wang Z. Wei Y. Wang X. Liu G. Zhang J. Li S. Cheng G. Wang Y. Ma Y. Gypenosides improve diabetic cardiomyopathy by inhibiting ROS ‐mediated NLRP 3 inflammasome activation. J. Cell. Mol. Med. 2018 22 9 4437 4448 10.1111/jcmm.13743 29993180
    [Google Scholar]
  12. Wang X. Wang Z.Y. Zheng J.H. Li S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med. 2021 19 1 1 11 10.1016/S1875‑5364(21)60001‑8 33516447
    [Google Scholar]
  13. Zhao S. Iyengar R. Systems pharmacology: Network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol. 2012 52 1 505 521 10.1146/annurev‑pharmtox‑010611‑134520 22235860
    [Google Scholar]
  14. Shoichet B.K. McGovern S.L. Wei B. Irwin J.J. Lead discovery using molecular docking. Curr. Opin. Chem. Biol. 2002 6 4 439 446 10.1016/S1367‑5931(02)00339‑3 12133718
    [Google Scholar]
  15. Zhou W. Lai X. Wang X. Yao X. Wang W. Li S. Network pharmacology to explore the anti-inflammatory mechanism of Xuebijing in the treatment of sepsis. Phytomedicine 2021 85 153543 10.1016/j.phymed.2021.153543 33799226
    [Google Scholar]
  16. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  17. Chen Y. Li Q. Ren S. Chen T. Zhai B. Cheng J. Shi X. Song L. Fan Y. Guo D. Investigation and experimental validation of curcumin-related mechanisms against hepatocellular carcinoma based on network pharmacology. J. Zhejiang Univ. Sci. B 2022 23 8 682 698 10.1631/jzus.B2200038 35953761
    [Google Scholar]
  18. Smoot M.E. Ono K. Ruscheinski J. Wang P.L. Ideker T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics 2011 27 3 431 432 10.1093/bioinformatics/btq675 21149340
    [Google Scholar]
  19. Hsin K.Y. Ghosh S. Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One 2013 8 12 e83922 10.1371/journal.pone.0083922 24391846
    [Google Scholar]
  20. Zhu W.B. Su F.Z. Sun Y.P. Yang B.Y. Wang Q.H. Kuang H.X. Antipharyngitis effects of Syringa oblata L. ethanolic extract in acute pharyngitis rat model and anti-inflammatory effect of Ir-Idoids in LPS-Induced RAW 264.7 cells. Evid. Based Complement. Alternat. Med. 2021 2021 1 16 10.1155/2021/5111752 34925529
    [Google Scholar]
  21. Yang Q. Zang H. Xing T. Zhang S. Li C. Zhang Y. Dong Y. Hu X. Yu J. Wen J. Jin J. Li J. Zhao R. Ma T. Meng X. Gypenoside XLIX protects against acute kidney injury by suppressing IGFBP7/IGF1R-mediated programmed cell death and inflammation. Phytomedicine 2021 85 153541 10.1016/j.phymed.2021.153541 33773190
    [Google Scholar]
  22. Liao C.P. Booker R.C. Brosseau J.P. Chen Z. Mo J. Tchegnon E. Wang Y. Clapp D.W. Le L.Q. Contributions of inflammation and tumor microenvironment to neurofibroma tumorigenesis. J. Clin. Invest. 2018 128 7 2848 2861 10.1172/JCI99424 29596064
    [Google Scholar]
  23. Bao X. Zhang Y. Zhang H. Xia L. Molecular mechanism of β-sitosterol and its derivatives in tumor progression. Front. Oncol. 2022 12 926975 10.3389/fonc.2022.926975 35756648
    [Google Scholar]
  24. Ding K. Tan Y.Y. Ding Y. Fang Y. Yang X. Fang J. Xu D.C. Zhang H. Lu W. Li M. Huang S.C. Cai M.L. Song Y. Ding Y.J. Zhang S.M. β‐Sitosterol improves experimental colitis in mice with a target against pathogenic bacteria. J. Cell. Biochem. 2019 120 4 5687 5694 10.1002/jcb.27853 30548286
    [Google Scholar]
  25. Anwar R. Sukmasari S. Siti Aisya L. Puspita Le F. Ilfani D. Febriani Y Y. Diki Prest P. Antimicrobial activity of β-Sitosterol Isolated from Kalanchoe tomentosa leaves against Staphylococcus aureus and Klebsiella pneumonia. Pak. J. Biol. Sci. 2022 25 7 602 607 10.3923/pjbs.2022.602.607 36098166
    [Google Scholar]
  26. Alasmary F.A. Awaad A.S. Alqahtani S.M. El-Meligy R.M. Abdullah D.A. Alqasoumi S.I. Evaluation of the chemical constituents and potential biological activities of Cunninghamella blakesleeana. Saudi Pharm. J. 2020 28 10 1197 1202 10.1016/j.jsps.2020.08.009 33132713
    [Google Scholar]
  27. Evangelina I.A. Herdiyati Y. Laviana A. Rikmasari R. Zubaedah C. Anisah Kurnia D. Bio-Mechanism inhibitory prediction of β-Sitosterol from Kemangi (Ocimum basilicum L.) as an inhibitor of MurA enzyme of oral bacteria: In vitro and in silico study. Adv. Appl. Bioinform. Chem. 2021 14 103 115 10.2147/AABC.S301488 34188494
    [Google Scholar]
  28. Hawkins P.T. Stephens L.R. PI3K signalling in inflammation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015 1851 6 882 897 10.1016/j.bbalip.2014.12.006
    [Google Scholar]
  29. Zhang Y. Wang A. Wang L. Yang R. Ni X. Shan L. Zhang L. Nitric oxide inhibits the release of TNF-α and IL-6 by down-regulating the expression of connexin 40 (Cx40) in rat T lymphocytes. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2018 34 5 385 389 30043727
    [Google Scholar]
  30. Dror E. Dalmas E. Meier D.T. Wueest S. Thévenet J. Thienel C. Timper K. Nordmann T.M. Traub S. Schulze F. Item F. Vallois D. Pattou F. Kerr-Conte J. Lavallard V. Berney T. Thorens B. Konrad D. Böni-Schnetzler M. Donath M.Y. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat. Immunol. 2017 18 3 283 292 10.1038/ni.3659 28092375
    [Google Scholar]
  31. Hu L. Zhao X. He X. Guo Y. Cheng H. Chen S. Zhou G. Wang J. Lu Y. Gynostemma Pentaphyllum ameliorates CCl4-induced liver injury via PDK1/Bcl-2 pathway with comprehensive analysis of network pharmacology and transcriptomics. Chin. Med. 2024 19 1 70 10.1186/s13020‑024‑00942‑w 38750545
    [Google Scholar]
  32. Ping K. Yang R. Chen H. Xie S. Xiang Y. Li M. Lu Y. Dong J. Gypenoside XLIX activates the Sirt1/Nrf2 signaling pathway to inhibit NLRP3 inflammasome activation to alleviate septic acute lung injury. Inflammation 2024 10.1007/s10753‑024‑02041‑2 38717633
    [Google Scholar]
/content/journals/cad/10.2174/0115734099324793250116133159
Loading
/content/journals/cad/10.2174/0115734099324793250116133159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test