Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Objective

Kushen ( Ait.) has a long history of medicinal use in China due to its medicinal values, such as antibacterial, antiviral, and anti-inflammatory. Rapid discovery of the components and the medicinal effects exerted by Kushen will help elucidate the science of Kushen in curing diseases. GSK3β (glycogen synthase kinase-3 beta) is a protein kinase with a wide range of physiological functions, such as antibacterial, antiviral, and anti-inflammatory. The discovery of inhibitors targeting GSK3β from Kushen was not only helpful for the rapid discovery of the components responsible for the efficacy of Kushen but also important for the development of novel drugs.

Methods

In this study, the chemical composition of Kushen was extracted from the TMSCP database. Molecular docking, GSK3β enzyme assay, and molecular dynamics simulations were used to discover the GSK3β inhibitors from the chemical composition of Kushen.

Results and Discussion

A total of 113 chemical compositions of Kushen were extracted from the TMSCP database. Molecular docking indicated that 15 chemical compositions of Kushen scored better than -8 kcal/mol against GSK3β. GSK3β enzyme assay demonstrated several inhibitory activities of kushenol I and kushenol F with IC values of 7.53 ± 2.55 µM and 4.96 ± 1.29 µM, respectively. Molecular dynamics simulations were used to reveal the interactions of kushenol I and kushenol F with GSK3β from structural and energetic perspectives.

Conclusion

Kushenol I and kushenol F could be the material basis for the antibacterial, antiviral, and anti-inflammatory properties of Kushen.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099321878241011104241
2024-10-25
2026-02-18
Loading full text...

Full text loading...

/deliver/fulltext/cad/22/1/CCADD-22-1-02.html?itemId=/content/journals/cad/10.2174/0115734099321878241011104241&mimeType=html&fmt=ahah

References

  1. LiJ. ZhangX. ShenX. LongQ. XuC. TanC. LinY. Phytochemistry and biological properties of isoprenoid flavonoids from Sophora flavescens Ait.Fitoterapia202014310455610.1016/j.fitote.2020.10455632194169
    [Google Scholar]
  2. HeX. FangJ. HuangL. WangJ. HuangX. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine.J. Ethnopharmacol.2015172102910.1016/j.jep.2015.06.01026087234
    [Google Scholar]
  3. SunP. ZhaoW. WangQ. ChenL. SunK. ZhanZ. WangJ. Chemical diversity, biological activities and Traditional uses of and important Chinese herb Sophora.Phytomedicine202210015405410.1016/j.phymed.2022.15405435358931
    [Google Scholar]
  4. JiaqiZ.H.A.O. HongL.I.U. RuiQ.I.N. ChoiH.O-Y.O.U.N.G. XinzhouY.A.N.G. Ethnomedicinal uses, phytochemistry and bioactivities of Sophora flavescens Ait.: A review.Journal of Holistic Integrative Pharmacy20212316319510.1016/S2707‑3688(23)00077‑8
    [Google Scholar]
  5. LongG.Q. WangD.D. WangJ. JiaJ.M. WangA.H. Chemical constituents of Sophora flavescens Ait. and cytotoxic activities of two new compounds.Nat. Prod. Res.202236110811310.1080/14786419.2020.176534032408767
    [Google Scholar]
  6. LiP. ChaiW.C. WangZ.Y. TangK.J. ChenJ.Y. VenterH. SempleS.J. XiangL. Bioactivity-guided isolation of compounds from Sophora flavescens with antibacterial activity against Acinetobacter baumannii.Nat. Prod. Res.202236174334434210.1080/14786419.2021.198357034592853
    [Google Scholar]
  7. CaoX. HeQ. Anti-tumor activities of bioactive phytochemicals in Sophora flavescens for Breast Cancer.Cancer Manag. Res.2020121457146710.2147/CMAR.S24312732161498
    [Google Scholar]
  8. LiK. XiaoK. ZhuS. WangY. WangW. Chinese herbal medicine for primary liver cancer therapy: Perspectives and challenges.Front. Pharmacol.20221388979910.3389/fphar.2022.88979935600861
    [Google Scholar]
  9. HuangR. LiuY. ZhaoL.L. ChenX. WangF. CaiW. ChenL. A new flavonoid from Sophora flavescens Ait.Nat. Prod. Res.201731192228223210.1080/14786419.2017.129799228278618
    [Google Scholar]
  10. LiuG. DongJ. WangH. HashiY. ChenS. Characterization of alkaloids in Sophora flavescens Ait. by high-performance liquid chromatography–electrospray ionization tandem mass spectrometry.J. Pharm. Biomed. Anal.20115451065107210.1016/j.jpba.2010.12.02421227622
    [Google Scholar]
  11. BaiG. PanY. ZhangY. LiY. WangJ. WangY. TengW. JinG. GengF. CaoJ. Research advances of molecular docking and molecular dynamic simulation in recognizing interaction between muscle proteins and exogenous additives.Food Chem.202342913683610.1016/j.foodchem.2023.13683637453331
    [Google Scholar]
  12. PrachayasittikulV. WorachartcheewanA. ShoombuatongW. SongtaweeN. SimeonS. PrachayasittikulV. NantasenamatC. Computer-aided drug design of bioactive natural products.Curr. Top. Med. Chem.201515181780180010.2174/156802661566615050615110125961523
    [Google Scholar]
  13. MullowneyM.W. DuncanK.R. ElsayedS.S. GargN. van der HooftJ.J.J. MartinN.I. MeijerD. TerlouwB.R. BiermannF. BlinK. DurairajJ. Gorostiola GonzálezM. HelfrichE.J.N. HuberF. Leopold-MesserS. RajanK. de RondT. van SantenJ.A. SorokinaM. BalunasM.J. BeniddirM.A. van BergeijkD.A. CarrollL.M. ClarkC.M. ClevertD.A. DejongC.A. DuC. FerrinhoS. GrisoniF. HofstetterA. JespersW. KalininaO.V. KautsarS.A. KimH. LeaoT.F. MasscheleinJ. ReesE.R. ReherR. RekerD. SchwallerP. SeglerM. SkinniderM.A. WalkerA.S. WillighagenE.L. ZdrazilB. ZiemertN. GossR.J.M. GuyomardP. VolkamerA. GerwickW.H. KimH.U. MüllerR. van WezelG.P. van WestenG.J.P. HirschA.K.H. LiningtonR.G. RobinsonS.L. MedemaM.H. Artificial intelligence for natural product drug discovery.Nat. Rev. Drug Discov.2023221189591610.1038/s41573‑023‑00774‑737697042
    [Google Scholar]
  14. HuR. ZhangJ. KangY. WangZ. PanP. DengY. HsiehC.Y. HouT. Comprehensive, Open-Source, and Automated Workflow for Multisite λ-Dynamics in Lead Optimization.J. Chem. Theory Comput.20242031465147810.1021/acs.jctc.3c0115438300792
    [Google Scholar]
  15. ZhangX. ShenC. ZhangH. KangY. HsiehC.Y. HouT. Advancing ligand docking through deep learning: Challenges and prospects in virtual screening.Acc. Chem. Res.202457101500150910.1021/acs.accounts.4c0009338577892
    [Google Scholar]
  16. ZhongH. WangX. ChenS. WangZ. WangH. XuL. HouT. YaoX. LiD. PanP. Discovery of novel inhibitors of brd4 for treating prostate cancer: A comprehensive case study for considering water networks in virtual screening and drug design.J. Med. Chem.202467113815110.1021/acs.jmedchem.3c0099638153295
    [Google Scholar]
  17. YangL. HuX. LuY. XuR. XuY. MaW. AlamM.S. ZhangT. ChaiX. LeiY. YeQ. DongX. KangY. CheJ. HouT. LiD. Discovery of N -(1-(6-Oxo-1,6-dihydropyrimidine)-pyrazole) Acetamide Derivatives as Novel Noncovalent DprE1 Inhibitors against Mycobacterium tuberculosis.J. Med. Chem.20246731914193110.1021/acs.jmedchem.3c0170338232131
    [Google Scholar]
  18. TanS. WangJ. GaoP. XieG. ZhangQ. LiuH. YaoX. Unveiling the selectivity mechanism of Type-I LRRK2 inhibitors by computational methods: Insights from binding thermodynamics and kinetics simulation.ACS Chem. Neurosci.202314183472348610.1021/acschemneuro.3c0033837647597
    [Google Scholar]
  19. WangT. WangW. JiangX. MaoJ. ZhuoL. LiuM. FuX. YaoX. ML-NPI: Predicting interactions between noncoding RNA and protein based on meta-learning in a large-scale dynamic graph.J. Chem. Inf. Model.20246472912292010.1021/acs.jcim.3c0123837920888
    [Google Scholar]
  20. WangZ. ZhongH. ZhangJ. PanP. WangD. LiuH. YaoX. HouT. KangY. Small-molecule conformer generators: Evaluation of traditional methods and AI models on high-quality data sets.J. Chem. Inf. Model.202363216525653610.1021/acs.jcim.3c0151937883143
    [Google Scholar]
  21. SaikiaS. BordoloiM. Molecular docking: Challenges, advances and its use in drug discovery perspective.Curr. Drug Targets201920550152110.2174/138945011966618102215301630360733
    [Google Scholar]
  22. VelmuruganD. PachaiappanR. RamakrishnanC. Recent trends in drug design and discovery.Curr. Top. Med. Chem.202020191761177010.2174/156802662066620062215000332568020
    [Google Scholar]
  23. WangX. SongK. LiL. ChenL. Structure-based drug design strategies and challenges.Curr. Top. Med. Chem.20181812998100610.2174/156802661866618081315292130101712
    [Google Scholar]
  24. LeidnerF. Kurt YilmazN. SchifferC.A. Target-specific prediction of ligand affinity with structure-based interaction fingerprints.J. Chem. Inf. Model.20195993679369110.1021/acs.jcim.9b0045731381335
    [Google Scholar]
  25. ShaikhF. TaiH.K. DesaiN. SiuS.W.I. LigTMap: Ligand and structure-based target identification and activity prediction for small molecular compounds.J. Cheminform.20211314410.1186/s13321‑021‑00523‑134112240
    [Google Scholar]
  26. HwangH. DeyF. PetreyD. HonigB. Structure-based prediction of ligand–protein interactions on a genome-wide scale.Proc. Natl. Acad. Sci. USA201711452136851369010.1073/pnas.170538111429229851
    [Google Scholar]
  27. WeiX. WuX. ChengZ. WuQ. CaoC. XuX. ShangH. Botanical drugs: A new strategy for structure-based target prediction.Brief. Bioinform.2022231bbab42510.1093/bib/bbab42534698349
    [Google Scholar]
  28. HummerA.M. AbanadesB. DeaneC.M. Advances in computational structure-based antibody design.Curr. Opin. Struct. Biol.20227410237910.1016/j.sbi.2022.10237935490649
    [Google Scholar]
  29. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.05127077332
    [Google Scholar]
  30. TeliD.M. GajjarA.K. Glycogen synthase kinase-3: A potential target for diabetes.Bioorg. Med. Chem.20239211740610.1016/j.bmc.2023.11740637536264
    [Google Scholar]
  31. YadavR. PatelB. Insights on effects of Wnt pathway modulation on insulin signaling and glucose homeostasis for the treatment of type 2 diabetes mellitus: Wnt activation or Wnt inhibition?Int. J. Biol. Macromol.2024261Pt 112963410.1016/j.ijbiomac.2024.12963438272413
    [Google Scholar]
  32. LinJ. SongT. LiC. MaoW. GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer.Biochim. Biophys. Acta Mol. Cell Res.18672020118659
    [Google Scholar]
  33. PecoraroC. FaggionB. BalboniB. CarboneD. PetersG.J. DianaP. AssarafY.G. GiovannettiE. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer.Drug Resist. Updat.20215810077910.1016/j.drup.2021.10077934461526
    [Google Scholar]
  34. WangH. KumarA. LamontR.J. ScottD.A. GSK3β and the control of infectious bacterial diseases.Trends Microbiol.201422420821710.1016/j.tim.2014.01.00924618402
    [Google Scholar]
  35. KaratiD. ShaooK.K. MahadikK.R. KumrD. Glycogen synthase kinase-3β inhibitors as a novel promising target in the treatment of cancer: Medicinal chemistry perspective.Results Chem.2022410053210.1016/j.rechem.2022.100532
    [Google Scholar]
  36. BarrJ.L. UnterwaldE.M. Glycogen synthase kinase-3 signaling in cellular and behavioral responses to psychostimulant drugs.Biochim. Biophys. Acta Mol. Cell Res.20201867911874610.1016/j.bbamcr.2020.11874632454064
    [Google Scholar]
  37. SongM. BodeA.M. DongZ. LeeM.H. AKT as a therapeutic target for cancer.Cancer Res.20197961019103110.1158/0008‑5472.CAN‑18‑273830808672
    [Google Scholar]
  38. BeurelE. GriecoS.F. JopeR.S. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases.Pharmacol. Ther.201514811413110.1016/j.pharmthera.2014.11.01625435019
    [Google Scholar]
  39. WadhwaP. JainP. JadhavH.R. Glycogen Synthase Kinase 3 (GSK3): Its role and inhibitors.Curr. Top. Med. Chem.202020171522153410.2174/156802662066620051615313632416693
    [Google Scholar]
  40. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  41. GaniyouA. Identification of potential C-kit protein kinase inhibitors associated with human liver cancer: Atom-based 3D-QSAR modeling, pharmacophores-based virtual screening and molecular docking studies.American J. Pharmacolog. Sci.202191129
    [Google Scholar]
  42. Carrasco-CarballoA. Steroidal plant growth promoters vs. phytopathogens, via enzymatic regulation; An in silico approach.Adv. Enzyme Res.2021943115697
    [Google Scholar]
  43. Schrödinger, LLCPrioritize the right protonation states for your drug discovery or materials science research2017Available From: https://www.schrodinger.com/platform/products/epik/
  44. FriesnerR.A. MurphyR.B. RepaskyM.P. FryeL.L. GreenwoodJ.R. HalgrenT.A. SanschagrinP.C. MainzD.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes.J. Med. Chem.200649216177619610.1021/jm051256o17034125
    [Google Scholar]
  45. GentileG. MerloG. PozzanA. BernasconiG. BaxB. BamboroughP. BridgesA. CarterP. NeuM. YaoG. BroughC. CutlerG. CoffinA. BelyanskayaS. 5-Aryl-4-carboxamide-1,3-oxazoles: Potent and selective GSK-3 inhibitors.Bioorg. Med. Chem. Lett.20122251989199410.1016/j.bmcl.2012.01.03422310227
    [Google Scholar]
  46. DalalV. DhankharP. SinghV. SinghV. RakhaminovG. Golemi-KotraD. KumarP. Structure-based identification of potential drugs against FmtA of staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM.Protein J.202140214816510.1007/s10930‑020‑09953‑633421024
    [Google Scholar]
  47. KashemM.A. NelsonR.M. YinglingJ.D. PullenS.S. ProkopowiczA.S.III JonesJ.W. WolakJ.P. RogersG.R. MorelockM.M. SnowR.J. HomonC.A. JakesS. Three mechanistically distinct kinase assays compared: Measurement of intrinsic ATPase activity identified the most comprehensive set of ITK inhibitors.SLAS Discov.2007121708310.1177/108705710629604717166826
    [Google Scholar]
  48. ParkH. ShinY. KimJ. HongS. Application of Fragment-Based de Novo Design to the Discovery of Selective Picomolar Inhibitors of Glycogen Synthase Kinase-3 Beta.J. Med. Chem.201659199018903410.1021/acs.jmedchem.6b0094427676184
    [Google Scholar]
  49. WangJ. WolfR.M. CaldwellJ.W. KollmanP.A. CaseD.A. Development and testing of a general amber force field.J. Comput. Chem.20042591157117410.1002/jcc.2003515116359
    [Google Scholar]
  50. Salomon-FerrerR. CaseD.A. WalkerR.C. An overview of the Amber biomolecular simulation package.Wiley Interdiscip. Rev. Comput. Mol. Sci.20133219821010.1002/wcms.1121
    [Google Scholar]
  51. MaierJ.A. MartinezC. KasavajhalaK. WickstromL. HauserK.E. SimmerlingC. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB.J. Chem. Theory Comput.20151183696371310.1021/acs.jctc.5b0025526574453
    [Google Scholar]
  52. OnufrievA.V. IzadiS. Water models for biomolecular simulations.Wiley Interdiscip. Rev. Comput. Mol. Sci.201882e134710.1002/wcms.1347
    [Google Scholar]
  53. PanD. NiuY. XueW. BaiQ. LiuH. YaoX. Computational study on the drug resistance mechanism of hepatitis C virus NS5B RNA-dependent RNA polymerase mutants to BMS-791325 by molecular dynamics simulation and binding free energy calculations.Chemom. Intell. Lab. Syst.201615418519310.1016/j.chemolab.2016.03.015
    [Google Scholar]
  54. PanD. NiuY. NingL. ZhangY. LiuH. YaoX. Computational study on the binding and unbinding mechanism of HCV NS5B with the inhibitor GS-461203 and substrate using conventional and steered molecular dynamics simulations.Chemom. Intell. Lab. Syst.2016156728010.1016/j.chemolab.2016.05.015
    [Google Scholar]
  55. ZhengY.G. WangJ.A. MengL. PeiX. ZhangL. AnL. LiC.L. MiaoY.L. Design, synthesis, biological activity evaluation of 3-(4-phenyl-1H-imidazol-2-yl)-1H-pyrazole derivatives as potent JAK 2/3 and aurora A/B kinases multi-targeted inhibitors.Eur. J. Med. Chem.202120911293410.1016/j.ejmech.2020.11293433109396
    [Google Scholar]
  56. PanD. XueW. ZhangW. LiuH. YaoX. Understanding the drug resistance mechanism of hepatitis C virus NS3/4A to ITMN-191 due to R155K, A156V, D168A/E mutations: A computational study.Biochim. Biophys. Acta, Gen. Subj.20121820101526153410.1016/j.bbagen.2012.06.00122698669
    [Google Scholar]
  57. PanD. HuangY. JiangD. ZhangY. WuM. HanM. JinX. Discovery of an EP300 Inhibitor using Structure-based Virtual Screening and Bioactivity Evaluation.Curr. Pharm. Des.202430251985199410.2174/011381612829805124052911331338835125
    [Google Scholar]
  58. MillerB.R.III McGeeT.D.Jr SwailsJ.M. HomeyerN. GohlkeH. RoitbergA.E. MMPBSA.py : An efficient program for end-state free energy calculations.J. Chem. Theory Comput.2012893314332110.1021/ct300418h26605738
    [Google Scholar]
  59. KumariR. RathiR. PathakS.R. DalalV. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus.J. Mol. Struct.2022125513247610.1016/j.molstruc.2022.132476
    [Google Scholar]
  60. LuoG. ChenL. BurtonC.R. XiaoH. SivaprakasamP. KrauseC.M. CaoY. LiuN. LippyJ. ClarkeW.J. SnowK. RaybonJ. AroraV. PokrossM. KishK. LewisH.A. LangleyD.R. MacorJ.E. DubowchikG.M. Discovery of isonicotinamides as highly selective, brain penetrable, and orally active glycogen synthase Kinase-3 inhibitors.J. Med. Chem.20165931041105110.1021/acs.jmedchem.5b0155026751161
    [Google Scholar]
  61. TeschR. BeckerC. MüllerM.P. BeckM.E. QuambuschL. GetlikM. LategahnJ. UhlenbrockN. CostaF.N. PolêtoM.D. PinheiroP.S.M. RodriguesD.A. Sant’AnnaC.M.R. FerreiraF.F. VerliH. FragaC.A.M. RauhD. An unusual intramolecular halogen bond guides conformational selection.Angew. Chem. Int. Ed.201857319970997510.1002/anie.20180491729873877
    [Google Scholar]
  62. PratiF. BuonfiglioR. FurlottiG. CavarischiaC. ManganoG. PicolloR. OggianuL. di MatteoA. OlivieriS. BoviG. PorcedduP.F. ReggianiA. GarroneB. Di GiorgioF.P. OmbratoR. Optimization of indazole-based GSK-3 inhibitors with mitigated hERG issue and in vivo activity in a mood disorder model.ACS Med. Chem. Lett.202011582583110.1021/acsmedchemlett.9b0063332435391
    [Google Scholar]
  63. BergS. BerghM. HellbergS. HögdinK. Lo-AlfredssonY. SödermanP. von BergS. WeigeltT. OrmöM. XueY. TuckerJ. NeelissenJ. JerningE. NilssonY. BhatR. Discovery of novel potent and highly selective glycogen synthase kinase-3β (GSK3β) inhibitors for Alzheimer’s disease: Design, synthesis, and characterization of pyrazines.J. Med. Chem.201255219107911910.1021/jm201724m22489897
    [Google Scholar]
  64. KallanN.C. SpencerK.L. BlakeJ.F. XuR. HeizerJ. BencsikJ.R. MitchellI.S. GloorS.L. MartinsonM. RisomT. GrossS.D. MoralesT.H. WuW.I. VigersG.P.A. BrandhuberB.J. SkeltonN.J. Discovery and SAR of spirochromane Akt inhibitors.Bioorg. Med. Chem. Lett.20112182410241410.1016/j.bmcl.2011.02.07321392984
    [Google Scholar]
  65. AronovA.M. TangQ. Martinez-BotellaG. BemisG.W. CaoJ. ChenG. EwingN.P. FordP.J. GermannU.A. GreenJ. HaleM.R. JacobsM. JanetkaJ.W. MaltaisF. MarklandW. NamchukM.N. NanthakumarS. PoondruS. StraubJ. ter HaarE. XieX. Structure-guided design of potent and selective pyrimidylpyrrole inhibitors of extracellular signal-regulated kinase (ERK) using conformational control.J. Med. Chem.200952206362636810.1021/jm900630q19827834
    [Google Scholar]
  66. HartzR.A. AhujaV.T. LuoG. ChenL. SivaprakasamP. XiaoH. KrauseC.M. ClarkeW.J. XuS. TokarskiJ.S. KishK. LewisH. SzapielN. RaviralaR. MutalikS. NakmodeD. ShahD. BurtonC.R. MacorJ.E. DubowchikG.M. Discovery of 2-(Anilino)pyrimidine-4-carboxamides as Highly Potent, Selective, and Orally Active Glycogen Synthase Kinase-3 (GSK-3) Inhibitors.J. Med. Chem.202366117534755210.1021/acs.jmedchem.3c0036437235865
    [Google Scholar]
  67. BalboniB. TripathiS.K. VeronesiM. RussoD. PennaI. GiabbaiB. BandieraT. StoriciP. GirottoS. CavalliA. Identification of Novel GSK-3β Hits Using Competitive Biophysical Assays.Int. J. Mol. Sci.2022237385610.3390/ijms2307385635409221
    [Google Scholar]
  68. BuonfiglioR. PratiF. BischettiM. CavarischiaC. FurlottiG. OmbratoR. Discovery of novel imidazopyridine GSK-3β Inhibitors supported by computational approaches.Molecules2020259216310.3390/molecules2509216332380735
    [Google Scholar]
  69. KuroyanagiM. ArakawaT. HirayamaY. HayashiT. Antibacterial and antiandrogen flavonoids from Sophora flavescens.J. Nat. Prod.199962121595159910.1021/np990051d10654410
    [Google Scholar]
  70. ChaJ.D. JeongM.R. JeongS.I. LeeK.Y. Antibacterial activity of sophoraflavanone G isolated from the roots of Sophora flavescens.J. Microbiol. Biotechnol.200717585886418051310
    [Google Scholar]
  71. TsuchiyaH. IinumaM. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua.Phytomedicine20007216116510.1016/S0944‑7113(00)80089‑610839220
    [Google Scholar]
  72. ChaJ.D. MoonS.E. KimJ.Y. JungE.K. LeeY.S. Antibacterial activity of sophoraflavanone G Isolated from the roots of Sophora flavescens against methicillin‐resistant Staphylococcus aureus.Phytother. Res.20092391326133110.1002/ptr.254019288534
    [Google Scholar]
  73. SzeA. OlagnierD. HadjS. HanX. TianX. XuH.T. YangL. ShiQ. WangP. WainbergM. WuJ. LinR. SophoraflavenoneG. Sophoraflavenone G Restricts Dengue and Zika Virus Infection via RNA Polymerase Interference.Viruses201791028710.3390/v910028728972551
    [Google Scholar]
  74. JoS. GongE.Y. YooW. ChoiH. JungD. NohK.H. KimS. KimS.H. LeeH.K. Anti-itching and anti-inflammatory effects of Kushenol F via the inhibition of TSLP Production.Pharmaceuticals (Basel)20221511134710.3390/ph1511134736355519
    [Google Scholar]
  75. GaoY. SunJ. LiW. DengW. WangY. LiX. YangZ. SophoraflavanoneG. Sophoraflavanone G: A review of the phytochemistry and pharmacology.Fitoterapia202417710608010.1016/j.fitote.2024.10608038901805
    [Google Scholar]
/content/journals/cad/10.2174/0115734099321878241011104241
Loading
/content/journals/cad/10.2174/0115734099321878241011104241
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): GSK3β; Kushen; kushenol F; kushenol I; structure-based virtual screening; TMSCP database
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test