Skip to content
2000
image of Discovery of Two GSK3β Inhibitors from Sophora flavescens Ait. using Structure-based Virtual Screening and Bioactivity Evaluation

Abstract

Objective

Kushen ( Ait.) has a long history of medicinal use in China due to its medicinal values, such as antibacterial, antiviral, and anti-inflammatory. Rapid discovery of the components and the medicinal effects exerted by Kushen will help elucidate the science of Kushen in curing diseases. GSK3β (glycogen synthase kinase-3 beta) is a protein kinase with a wide range of physiological functions, such as antibacterial, antiviral, and anti-inflammatory. The discovery of inhibitors targeting GSK3β from Kushen was not only helpful for the rapid discovery of the components responsible for the efficacy of Kushen but also important for the development of novel drugs.

Methods

In this study, the chemical composition of Kushen was extracted from the TMSCP database. Molecular docking, GSK3β enzyme assay, and molecular dynamics simulations were used to discover the GSK3β inhibitors from the chemical composition of Kushen.

Results

A total of 113 chemical compositions of Kushen were extracted from the TMSCP database. Molecular docking indicated that 15 chemical compositions of Kushen scored better than -8 kcal/mol against GSK3β. GSK3β enzyme assay demonstrated several inhibitory activities of kushenol I and kushenol F with IC values of 7.53 ± 2.55 µM and 4.96 ± 1.29 µM, respectively. Molecular dynamics simulations were used to reveal the interactions of kushenol I and kushenol F with GSK3β from structural and energetic perspectives.

Conclusion

Kushenol I and kushenol F could be the material basis for the antibacterial, antiviral, and anti-inflammatory properties of Kushen.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099321878241011104241
2024-10-25
2025-01-18
Loading full text...

Full text loading...

References

  1. Li J. Zhang X. Shen X. Long Q. Xu C. Tan C. Lin Y. Phytochemistry and biological properties of isoprenoid flavonoids from Sophora flavescens Ait. Fitoterapia 2020 143 104556 10.1016/j.fitote.2020.104556 32194169
    [Google Scholar]
  2. He X. Fang J. Huang L. Wang J. Huang X. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2015 172 10 29 10.1016/j.jep.2015.06.010 26087234
    [Google Scholar]
  3. Sun P. Zhao W. Wang Q. Chen L. Sun K. Zhan Z. Wang J. Chemical diversity, biological activities and Traditional uses of and important Chinese herb Sophora. Phytomedicine 2022 100 154054 10.1016/j.phymed.2022.154054 35358931
    [Google Scholar]
  4. Jiaqi Z.H.A.O. Hong L.I.U. Rui Q.I.N. Choi H.O-Y.O.U.N.G. Xinzhou Y.A.N.G. Ethnomedicinal uses, phytochemistry and bioactivities of Sophora flavescens Ait.: A review. Journal of Holistic Integrative Pharmacy 2021 2 3 163 195 10.1016/S2707‑3688(23)00077‑8
    [Google Scholar]
  5. Long G.Q. Wang D.D. Wang J. Jia J.M. Wang A.H. Chemical constituents of Sophora flavescens Ait. and cytotoxic activities of two new compounds. Nat. Prod. Res. 2022 36 1 108 113 10.1080/14786419.2020.1765340 32408767
    [Google Scholar]
  6. Li P. Chai W.C. Wang Z.Y. Tang K.J. Chen J.Y. Venter H. Semple S.J. Xiang L. Bioactivity-guided isolation of compounds from Sophora flavescens with antibacterial activity against Acinetobacter baumannii. Nat. Prod. Res. 2022 36 17 4334 4342 10.1080/14786419.2021.1983570 34592853
    [Google Scholar]
  7. Cao X. He Q. Anti-tumor activities of bioactive phytochemicals in Sophora flavescens for Breast Cancer. Cancer Manag. Res. 2020 12 1457 1467 10.2147/CMAR.S243127 32161498
    [Google Scholar]
  8. Li K. Xiao K. Zhu S. Wang Y. Wang W. Chinese herbal medicine for primary liver cancer therapy: Perspectives and challenges. Front. Pharmacol. 2022 13 889799 10.3389/fphar.2022.889799 35600861
    [Google Scholar]
  9. Huang R. Liu Y. Zhao L.L. Chen X. Wang F. Cai W. Chen L. A new flavonoid from Sophora flavescens Ait. Nat. Prod. Res. 2017 31 19 2228 2232 10.1080/14786419.2017.1297992 28278618
    [Google Scholar]
  10. Liu G. Dong J. Wang H. Hashi Y. Chen S. Characterization of alkaloids in Sophora flavescens Ait. by high-performance liquid chromatography–electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 2011 54 5 1065 1072 10.1016/j.jpba.2010.12.024 21227622
    [Google Scholar]
  11. Bai G. Pan Y. Zhang Y. Li Y. Wang J. Wang Y. Teng W. Jin G. Geng F. Cao J. Research advances of molecular docking and molecular dynamic simulation in recognizing interaction between muscle proteins and exogenous additives. Food Chem. 2023 429 136836 10.1016/j.foodchem.2023.136836 37453331
    [Google Scholar]
  12. Prachayasittikul V. Worachartcheewan A. Shoombuatong W. Songtawee N. Simeon S. Prachayasittikul V. Nantasenamat C. Computer-aided drug design of bioactive natural products. Curr. Top. Med. Chem. 2015 15 18 1780 1800 10.2174/1568026615666150506151101 25961523
    [Google Scholar]
  13. Mullowney M.W. Duncan K.R. Elsayed S.S. Garg N. van der Hooft J.J.J. Martin N.I. Meijer D. Terlouw B.R. Biermann F. Blin K. Durairaj J. Gorostiola González M. Helfrich E.J.N. Huber F. Leopold-Messer S. Rajan K. de Rond T. van Santen J.A. Sorokina M. Balunas M.J. Beniddir M.A. van Bergeijk D.A. Carroll L.M. Clark C.M. Clevert D.A. Dejong C.A. Du C. Ferrinho S. Grisoni F. Hofstetter A. Jespers W. Kalinina O.V. Kautsar S.A. Kim H. Leao T.F. Masschelein J. Rees E.R. Reher R. Reker D. Schwaller P. Segler M. Skinnider M.A. Walker A.S. Willighagen E.L. Zdrazil B. Ziemert N. Goss R.J.M. Guyomard P. Volkamer A. Gerwick W.H. Kim H.U. Müller R. van Wezel G.P. van Westen G.J.P. Hirsch A.K.H. Linington R.G. Robinson S.L. Medema M.H. Artificial intelligence for natural product drug discovery. Nat. Rev. Drug Discov. 2023 22 11 895 916 10.1038/s41573‑023‑00774‑7 37697042
    [Google Scholar]
  14. Hu R. Zhang J. Kang Y. Wang Z. Pan P. Deng Y. Hsieh C.Y. Hou T. Comprehensive, Open-Source, and Automated Workflow for Multisite λ-Dynamics in Lead Optimization. J. Chem. Theory Comput. 2024 20 3 1465 1478 10.1021/acs.jctc.3c01154 38300792
    [Google Scholar]
  15. Zhang X. Shen C. Zhang H. Kang Y. Hsieh C.Y. Hou T. Advancing ligand docking through deep learning: Challenges and prospects in virtual screening. Acc. Chem. Res. 2024 57 10 1500 1509 10.1021/acs.accounts.4c00093 38577892
    [Google Scholar]
  16. Zhong H. Wang X. Chen S. Wang Z. Wang H. Xu L. Hou T. Yao X. Li D. Pan P. Discovery of novel inhibitors of brd4 for treating prostate cancer: A comprehensive case study for considering water networks in virtual screening and drug design. J. Med. Chem. 2024 67 1 138 151 10.1021/acs.jmedchem.3c00996 38153295
    [Google Scholar]
  17. Yang L. Hu X. Lu Y. Xu R. Xu Y. Ma W. Alam M.S. Zhang T. Chai X. Lei Y. Ye Q. Dong X. Kang Y. Che J. Hou T. Li D. Discovery of N -(1-(6-Oxo-1,6-dihydropyrimidine)-pyrazole) Acetamide Derivatives as Novel Noncovalent DprE1 Inhibitors against Mycobacterium tuberculosis. J. Med. Chem. 2024 67 3 1914 1931 10.1021/acs.jmedchem.3c01703 38232131
    [Google Scholar]
  18. Tan S. Wang J. Gao P. Xie G. Zhang Q. Liu H. Yao X. Unveiling the selectivity mechanism of Type-I LRRK2 inhibitors by computational methods: Insights from binding thermodynamics and kinetics simulation. ACS Chem. Neurosci. 2023 14 18 3472 3486 10.1021/acschemneuro.3c00338 37647597
    [Google Scholar]
  19. Wang T. Wang W. Jiang X. Mao J. Zhuo L. Liu M. Fu X. Yao X. ML-NPI: Predicting interactions between noncoding RNA and protein based on meta-learning in a large-scale dynamic graph. J. Chem. Inf. Model. 2024 64 7 2912 2920 10.1021/acs.jcim.3c01238 37920888
    [Google Scholar]
  20. Wang Z. Zhong H. Zhang J. Pan P. Wang D. Liu H. Yao X. Hou T. Kang Y. Small-molecule conformer generators: Evaluation of traditional methods and AI models on high-quality data sets. J. Chem. Inf. Model. 2023 63 21 6525 6536 10.1021/acs.jcim.3c01519 37883143
    [Google Scholar]
  21. Saikia S. Bordoloi M. Molecular docking: Challenges, advances and its use in drug discovery perspective. Curr. Drug Targets 2019 20 5 501 521 10.2174/1389450119666181022153016 30360733
    [Google Scholar]
  22. Velmurugan D. Pachaiappan R. Ramakrishnan C. Recent trends in drug design and discovery. Curr. Top. Med. Chem. 2020 20 19 1761 1770 10.2174/1568026620666200622150003 32568020
    [Google Scholar]
  23. Wang X. Song K. Li L. Chen L. Structure-based drug design strategies and challenges. Curr. Top. Med. Chem. 2018 18 12 998 1006 10.2174/1568026618666180813152921 30101712
    [Google Scholar]
  24. Leidner F. Kurt Yilmaz N. Schiffer C.A. Target-specific prediction of ligand affinity with structure-based interaction fingerprints. J. Chem. Inf. Model. 2019 59 9 3679 3691 10.1021/acs.jcim.9b00457 31381335
    [Google Scholar]
  25. Shaikh F. Tai H.K. Desai N. Siu S.W.I. LigTMap: Ligand and structure-based target identification and activity prediction for small molecular compounds. J. Cheminform. 2021 13 1 44 10.1186/s13321‑021‑00523‑1 34112240
    [Google Scholar]
  26. Hwang H. Dey F. Petrey D. Honig B. Structure-based prediction of ligand–protein interactions on a genome-wide scale. Proc. Natl. Acad. Sci. USA 2017 114 52 13685 13690 10.1073/pnas.1705381114 29229851
    [Google Scholar]
  27. Wei X. Wu X. Cheng Z. Wu Q. Cao C. Xu X. Shang H. Botanical drugs: A new strategy for structure-based target prediction. Brief. Bioinform. 2022 23 1 bbab425 10.1093/bib/bbab425 34698349
    [Google Scholar]
  28. Hummer A.M. Abanades B. Deane C.M. Advances in computational structure-based antibody design. Curr. Opin. Struct. Biol. 2022 74 102379 10.1016/j.sbi.2022.102379 35490649
    [Google Scholar]
  29. Forli S. Huey R. Pique M.E. Sanner M.F. Goodsell D.S. Olson A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016 11 5 905 919 10.1038/nprot.2016.051 27077332
    [Google Scholar]
  30. Teli D.M. Gajjar A.K. Glycogen synthase kinase-3: A potential target for diabetes. Bioorg. Med. Chem. 2023 92 117406 10.1016/j.bmc.2023.117406 37536264
    [Google Scholar]
  31. Yadav R. Patel B. Insights on effects of Wnt pathway modulation on insulin signaling and glucose homeostasis for the treatment of type 2 diabetes mellitus: Wnt activation or Wnt inhibition? Int. J. Biol. Macromol. 2024 261 Pt 1 129634 10.1016/j.ijbiomac.2024.129634 38272413
    [Google Scholar]
  32. Lin J. Song T. Li C. Mao W. GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim. Biophys. Acta Mol. Cell Res. 1867 2020 118659
    [Google Scholar]
  33. Pecoraro C. Faggion B. Balboni B. Carbone D. Peters G.J. Diana P. Assaraf Y.G. Giovannetti E. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resist. Updat. 2021 58 100779 10.1016/j.drup.2021.100779 34461526
    [Google Scholar]
  34. Wang H. Kumar A. Lamont R.J. Scott D.A. GSK3β and the control of infectious bacterial diseases. Trends Microbiol. 2014 22 4 208 217 10.1016/j.tim.2014.01.009 24618402
    [Google Scholar]
  35. Karati D. Shaoo K.K. Mahadik K.R. Kumr D. Glycogen synthase kinase-3β inhibitors as a novel promising target in the treatment of cancer: Medicinal chemistry perspective. Results Chem. 2022 4 100532 10.1016/j.rechem.2022.100532
    [Google Scholar]
  36. Barr J.L. Unterwald E.M. Glycogen synthase kinase-3 signaling in cellular and behavioral responses to psychostimulant drugs. Biochim. Biophys. Acta Mol. Cell Res. 2020 1867 9 118746 10.1016/j.bbamcr.2020.118746 32454064
    [Google Scholar]
  37. Song M. Bode A.M. Dong Z. Lee M.H. AKT as a therapeutic target for cancer. Cancer Res. 2019 79 6 1019 1031 10.1158/0008‑5472.CAN‑18‑2738 30808672
    [Google Scholar]
  38. Beurel E. Grieco S.F. Jope R.S. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol. Ther. 2015 148 114 131 10.1016/j.pharmthera.2014.11.016 25435019
    [Google Scholar]
  39. Wadhwa P. Jain P. Jadhav H.R. Glycogen Synthase Kinase 3 (GSK3): Its role and inhibitors. Curr. Top. Med. Chem. 2020 20 17 1522 1534 10.2174/1568026620666200516153136 32416693
    [Google Scholar]
  40. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  41. Ganiyou A. Identification of potential C-kit protein kinase inhibitors associated with human liver cancer: Atom-based 3D-QSAR modeling, pharmacophores-based virtual screening and molecular docking studies. American J. Pharmacolog. Sci. 2021 9 1 1 29
    [Google Scholar]
  42. Carrasco-Carballo A. Steroidal plant growth promoters vs. phytopathogens, via enzymatic regulation; An in silico approach. Adv. Enzyme Res. 2021 9 4 3115697
    [Google Scholar]
  43. Schrödinger, LLC Prioritize the right protonation states for your drug discovery or materials science research 2017 Available From: https://www.schrodinger.com/platform/products/epik/
  44. Friesner R.A. Murphy R.B. Repasky M.P. Frye L.L. Greenwood J.R. Halgren T.A. Sanschagrin P.C. Mainz D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006 49 21 6177 6196 10.1021/jm051256o 17034125
    [Google Scholar]
  45. Gentile G. Merlo G. Pozzan A. Bernasconi G. Bax B. Bamborough P. Bridges A. Carter P. Neu M. Yao G. Brough C. Cutler G. Coffin A. Belyanskaya S. 5-Aryl-4-carboxamide-1,3-oxazoles: Potent and selective GSK-3 inhibitors. Bioorg. Med. Chem. Lett. 2012 22 5 1989 1994 10.1016/j.bmcl.2012.01.034 22310227
    [Google Scholar]
  46. Dalal V. Dhankhar P. Singh V. Singh V. Rakhaminov G. Golemi-Kotra D. Kumar P. Structure-based identification of potential drugs against FmtA of staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM. Protein J. 2021 40 2 148 165 10.1007/s10930‑020‑09953‑6 33421024
    [Google Scholar]
  47. Kashem M.A. Nelson R.M. Yingling J.D. Pullen S.S. Prokopowicz A.S. III Jones J.W. Wolak J.P. Rogers G.R. Morelock M.M. Snow R.J. Homon C.A. Jakes S. Three mechanistically distinct kinase assays compared: Measurement of intrinsic ATPase activity identified the most comprehensive set of ITK inhibitors. SLAS Discov. 2007 12 1 70 83 10.1177/1087057106296047 17166826
    [Google Scholar]
  48. Park H. Shin Y. Kim J. Hong S. Application of Fragment-Based de Novo Design to the Discovery of Selective Picomolar Inhibitors of Glycogen Synthase Kinase-3 Beta. J. Med. Chem. 2016 59 19 9018 9034 10.1021/acs.jmedchem.6b00944 27676184
    [Google Scholar]
  49. Wang J. Wolf R.M. Caldwell J.W. Kollman P.A. Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004 25 9 1157 1174 10.1002/jcc.20035 15116359
    [Google Scholar]
  50. Salomon-Ferrer R. Case D.A. Walker R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013 3 2 198 210 10.1002/wcms.1121
    [Google Scholar]
  51. Maier J.A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K.E. Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015 11 8 3696 3713 10.1021/acs.jctc.5b00255 26574453
    [Google Scholar]
  52. Onufriev A.V. Izadi S. Water models for biomolecular simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018 8 2 e1347 10.1002/wcms.1347
    [Google Scholar]
  53. Pan D. Niu Y. Xue W. Bai Q. Liu H. Yao X. Computational study on the drug resistance mechanism of hepatitis C virus NS5B RNA-dependent RNA polymerase mutants to BMS-791325 by molecular dynamics simulation and binding free energy calculations. Chemom. Intell. Lab. Syst. 2016 154 185 193 10.1016/j.chemolab.2016.03.015
    [Google Scholar]
  54. Pan D. Niu Y. Ning L. Zhang Y. Liu H. Yao X. Computational study on the binding and unbinding mechanism of HCV NS5B with the inhibitor GS-461203 and substrate using conventional and steered molecular dynamics simulations. Chemom. Intell. Lab. Syst. 2016 156 72 80 10.1016/j.chemolab.2016.05.015
    [Google Scholar]
  55. Zheng Y.G. Wang J.A. Meng L. Pei X. Zhang L. An L. Li C.L. Miao Y.L. Design, synthesis, biological activity evaluation of 3-(4-phenyl-1H-imidazol-2-yl)-1H-pyrazole derivatives as potent JAK 2/3 and aurora A/B kinases multi-targeted inhibitors. Eur. J. Med. Chem. 2021 209 112934 10.1016/j.ejmech.2020.112934 33109396
    [Google Scholar]
  56. Pan D. Xue W. Zhang W. Liu H. Yao X. Understanding the drug resistance mechanism of hepatitis C virus NS3/4A to ITMN-191 due to R155K, A156V, D168A/E mutations: A computational study. Biochim. Biophys. Acta, Gen. Subj. 2012 1820 10 1526 1534 10.1016/j.bbagen.2012.06.001 22698669
    [Google Scholar]
  57. Pan D. Huang Y. Jiang D. Zhang Y. Wu M. Han M. Jin X. Discovery of an EP300 Inhibitor using Structure-based Virtual Screening and Bioactivity Evaluation. Curr. Pharm. Des. 2024 30 25 1985 1994 10.2174/0113816128298051240529113313 38835125
    [Google Scholar]
  58. Miller B.R. III McGee T.D. Jr Swails J.M. Homeyer N. Gohlke H. Roitberg A.E. MMPBSA.py : An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012 8 9 3314 3321 10.1021/ct300418h 26605738
    [Google Scholar]
  59. Kumari R. Rathi R. Pathak S.R. Dalal V. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. J. Mol. Struct. 2022 1255 132476 10.1016/j.molstruc.2022.132476
    [Google Scholar]
  60. Luo G. Chen L. Burton C.R. Xiao H. Sivaprakasam P. Krause C.M. Cao Y. Liu N. Lippy J. Clarke W.J. Snow K. Raybon J. Arora V. Pokross M. Kish K. Lewis H.A. Langley D.R. Macor J.E. Dubowchik G.M. Discovery of isonicotinamides as highly selective, brain penetrable, and orally active glycogen synthase Kinase-3 inhibitors. J. Med. Chem. 2016 59 3 1041 1051 10.1021/acs.jmedchem.5b01550 26751161
    [Google Scholar]
  61. Tesch R. Becker C. Müller M.P. Beck M.E. Quambusch L. Getlik M. Lategahn J. Uhlenbrock N. Costa F.N. Polêto M.D. Pinheiro P.S.M. Rodrigues D.A. Sant’Anna C.M.R. Ferreira F.F. Verli H. Fraga C.A.M. Rauh D. An unusual intramolecular halogen bond guides conformational selection. Angew. Chem. Int. Ed. 2018 57 31 9970 9975 10.1002/anie.201804917 29873877
    [Google Scholar]
  62. Prati F. Buonfiglio R. Furlotti G. Cavarischia C. Mangano G. Picollo R. Oggianu L. di Matteo A. Olivieri S. Bovi G. Porceddu P.F. Reggiani A. Garrone B. Di Giorgio F.P. Ombrato R. Optimization of indazole-based GSK-3 inhibitors with mitigated hERG issue and in vivo activity in a mood disorder model. ACS Med. Chem. Lett. 2020 11 5 825 831 10.1021/acsmedchemlett.9b00633 32435391
    [Google Scholar]
  63. Berg S. Bergh M. Hellberg S. Högdin K. Lo-Alfredsson Y. Söderman P. von Berg S. Weigelt T. Ormö M. Xue Y. Tucker J. Neelissen J. Jerning E. Nilsson Y. Bhat R. Discovery of novel potent and highly selective glycogen synthase kinase-3β (GSK3β) inhibitors for Alzheimer’s disease: Design, synthesis, and characterization of pyrazines. J. Med. Chem. 2012 55 21 9107 9119 10.1021/jm201724m 22489897
    [Google Scholar]
  64. Kallan N.C. Spencer K.L. Blake J.F. Xu R. Heizer J. Bencsik J.R. Mitchell I.S. Gloor S.L. Martinson M. Risom T. Gross S.D. Morales T.H. Wu W.I. Vigers G.P.A. Brandhuber B.J. Skelton N.J. Discovery and SAR of spirochromane Akt inhibitors. Bioorg. Med. Chem. Lett. 2011 21 8 2410 2414 10.1016/j.bmcl.2011.02.073 21392984
    [Google Scholar]
  65. Aronov A.M. Tang Q. Martinez-Botella G. Bemis G.W. Cao J. Chen G. Ewing N.P. Ford P.J. Germann U.A. Green J. Hale M.R. Jacobs M. Janetka J.W. Maltais F. Markland W. Namchuk M.N. Nanthakumar S. Poondru S. Straub J. ter Haar E. Xie X. Structure-guided design of potent and selective pyrimidylpyrrole inhibitors of extracellular signal-regulated kinase (ERK) using conformational control. J. Med. Chem. 2009 52 20 6362 6368 10.1021/jm900630q 19827834
    [Google Scholar]
  66. Hartz R.A. Ahuja V.T. Luo G. Chen L. Sivaprakasam P. Xiao H. Krause C.M. Clarke W.J. Xu S. Tokarski J.S. Kish K. Lewis H. Szapiel N. Ravirala R. Mutalik S. Nakmode D. Shah D. Burton C.R. Macor J.E. Dubowchik G.M. Discovery of 2-(Anilino)pyrimidine-4-carboxamides as Highly Potent, Selective, and Orally Active Glycogen Synthase Kinase-3 (GSK-3) Inhibitors. J. Med. Chem. 2023 66 11 7534 7552 10.1021/acs.jmedchem.3c00364 37235865
    [Google Scholar]
  67. Balboni B. Tripathi S.K. Veronesi M. Russo D. Penna I. Giabbai B. Bandiera T. Storici P. Girotto S. Cavalli A. Identification of Novel GSK-3β Hits Using Competitive Biophysical Assays. Int. J. Mol. Sci. 2022 23 7 3856 10.3390/ijms23073856 35409221
    [Google Scholar]
  68. Buonfiglio R. Prati F. Bischetti M. Cavarischia C. Furlotti G. Ombrato R. Discovery of novel imidazopyridine GSK-3β Inhibitors supported by computational approaches. Molecules 2020 25 9 2163 10.3390/molecules25092163 32380735
    [Google Scholar]
  69. Kuroyanagi M. Arakawa T. Hirayama Y. Hayashi T. Antibacterial and antiandrogen flavonoids from Sophora flavescens. J. Nat. Prod. 1999 62 12 1595 1599 10.1021/np990051d 10654410
    [Google Scholar]
  70. Cha J.D. Jeong M.R. Jeong S.I. Lee K.Y. Antibacterial activity of sophoraflavanone G isolated from the roots of Sophora flavescens. J. Microbiol. Biotechnol. 2007 17 5 858 864 18051310
    [Google Scholar]
  71. Tsuchiya H. Iinuma M. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. Phytomedicine 2000 7 2 161 165 10.1016/S0944‑7113(00)80089‑6 10839220
    [Google Scholar]
  72. Cha J.D. Moon S.E. Kim J.Y. Jung E.K. Lee Y.S. Antibacterial activity of sophoraflavanone G Isolated from the roots of Sophora flavescens against methicillin‐resistant Staphylococcus aureus. Phytother. Res. 2009 23 9 1326 1331 10.1002/ptr.2540 19288534
    [Google Scholar]
  73. Sze A. Olagnier D. Hadj S. Han X. Tian X. Xu H.T. Yang L. Shi Q. Wang P. Wainberg M. Wu J. Lin R. Sophoraflavenone G. Sophoraflavenone G Restricts Dengue and Zika Virus Infection via RNA Polymerase Interference. Viruses 2017 9 10 287 10.3390/v9100287 28972551
    [Google Scholar]
  74. Jo S. Gong E.Y. Yoo W. Choi H. Jung D. Noh K.H. Kim S. Kim S.H. Lee H.K. Anti-itching and anti-inflammatory effects of Kushenol F via the inhibition of TSLP Production. Pharmaceuticals (Basel) 2022 15 11 1347 10.3390/ph15111347 36355519
    [Google Scholar]
  75. Gao Y. Sun J. Li W. Deng W. Wang Y. Li X. Yang Z. Sophoraflavanone G. Sophoraflavanone G: A review of the phytochemistry and pharmacology. Fitoterapia 2024 177 106080 10.1016/j.fitote.2024.106080 38901805
    [Google Scholar]
/content/journals/cad/10.2174/0115734099321878241011104241
Loading
/content/journals/cad/10.2174/0115734099321878241011104241
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: Kushen ; structure-based virtual screening ; GSK3β ; kushenol F ; kushenol I
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test