Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

As a traditional Chinese medicine, Danshen shows potential efficacy for treating ulcerative colitis (UC). However, the bioactive components and mode of action were unclear.

Aim

This paper uses a combination of network pharmacology, serum medicinal chemistry, and gene expression profiling to clarify its possible molecular mechanism of action and material basis.

Methods

Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was utilized to analyze the herbal components and metabolites from the serum of Danshen-treated mice. Gene expression profiles were applied to construct a database of Danshen action targets. Then, active ingredient-target-biological functional module networks were constructed to analyze the mechanism of action. Molecular docking has further confirmed the possibility of its components to the targets.

Results

As a result, 193 common targets between 1684 Danshen-related DEGs and 1492 UC targets were determined as the potential targets for Danshen in treatment with UC. Serum pharmacochemistry and target prediction showed that 22 components in serum acted on 777 targets. Intersection with common targets yielded 46 core targets, and an active ingredient-target-biological functional module network was constructed for analysis. Network prediction and molecular docking results showed that the main action modules were inflammatory response and cell apoptosis, which mainly acted on targets SRC, RELA, HSP90AA1, CTNNB1, STAT3, and CASP3. The main components of Danshen intervention in UC were predicted to include Catechol, 3,9-Dimethoxypterocarpan, 8-Prenylnaringenin, Isoferulic acid, Salvianolic acid C, and Danshensu.

Discussion

This work resolved the ambiguity of Danshen’s anti-UC material basis and mechanism: 22 serum-absorbed components acted on 46 core targets to modulate inflammation and apoptosis, validating the integrated approach and laying groundwork for UC treatment and TCM research.

Conclusion

The present study provides a scientific foundation for further explicating the mechanisms of Danshen against UC.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099318174240926103444
2024-10-10
2026-02-20
Loading full text...

Full text loading...

/deliver/fulltext/cad/22/1/CCADD-22-1-03.html?itemId=/content/journals/cad/10.2174/0115734099318174240926103444&mimeType=html&fmt=ahah

References

  1. BaumgartD.C. SandbornW.J. Inflammatory bowel disease: Clinical aspects and established and evolving therapies.Lancet200736995731641165710.1016/S0140‑6736(07)60751‑X 17499606
    [Google Scholar]
  2. SclanoG. Asthma, nasal polyposis and ulcerative colitis: A new perspective.Clin. Exp. Allergy20023281144114910.1046/j.1365‑2745.2002.01460.x 12190649
    [Google Scholar]
  3. NgS.C. ShiH.Y. HamidiN. UnderwoodF.E. TangW. BenchimolE.I. PanaccioneR. GhoshS. WuJ.C.Y. ChanF.K.L. SungJ.J.Y. KaplanG.G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies.Lancet2017390101142769277810.1016/S0140‑6736(17)32448‑0 29050646
    [Google Scholar]
  4. UngaroR. MehandruS. AllenP.B. Peyrin-BirouletL. ColombelJ.F. Ulcerative colitis.Lancet2017389100801756177010.1016/S0140‑6736(16)32126‑2 27914657
    [Google Scholar]
  5. SandsB.E. SandbornW.J. PanaccioneR. O’BrienC.D. ZhangH. JohannsJ. AdedokunO.J. LiK. Peyrin-BirouletL. Van AsscheG. DaneseS. TarganS. AbreuM.T. HisamatsuT. SzaparyP. MaranoC. Ustekinumab as Induction and Maintenance Therapy for Ulcerative Colitis.N. Engl. J. Med.2019381131201121410.1056/NEJMoa1900750 31553833
    [Google Scholar]
  6. ZengS. LinW. LuoP. WeiJ. LiangQ. HuangG. Advances in traditional Chinese medicine treatment of ulcerative colitis.J. Tradit. Chin. Med.20204706209212
    [Google Scholar]
  7. ChenS. LiuX. JunC. DongyueZ. Treatment of 32 cases of ulcerative colitis of dampness heat accumulation type with changqingshu formula.Clin. Med. Res.202134082124
    [Google Scholar]
  8. SunY. GaoC. PengZ. Clinical study on modified Pulsatilla Decoction enema in the treatment of chronic ulcerative colitis.Chin J Anorectal Diseases202141036061
    [Google Scholar]
  9. YanZ. LiuY. MaT. XuM. ZhangX. ZhaX. YangJ. JiangP. ChenX. LinZ. WuY. ZuR. LinW. LinX. Efficacy and safety of retention enema with traditional Chinese medicine for ulcerative colitis: A meta-analysis of randomized controlled trials.Complement. Ther. Clin. Pract.20214210127810.1016/j.ctcp.2020.101278 33276227
    [Google Scholar]
  10. ZhuC. Clinical significance of modified Banxia Xiexin Decoction in the treatment of chronic gastritis complicated with ulcerative colitis.Heilongjiang Trad Chin Med20215004107108
    [Google Scholar]
  11. ZhangX. Therapeutic effect of Shenling Baizhu powder combined with traditional Chinese medicine retention enema on ulcerative colitis of spleen stomach weakness type.Liaoning Zhongyiyao Daxue Xuebao20171903187190
    [Google Scholar]
  12. LanJ. LiK. GreshamA. MiaoJ. Tanshinone IIA sodium sulfonate attenuates inflammation by upregulating circ-Sirt1 and inhibiting the entry of NF-κB into the nucleus.Eur. J. Pharmacol.202291417469310.1016/j.ejphar.2021.174693 34896110
    [Google Scholar]
  13. MaS. ZhangD. LouH. SunL. JiJ. Evaluation of the anti-inflammatory activities of tanshinones isolated from Salvia miltiorrhiza var. alba roots in THP-1 macrophages.J. Ethnopharmacol.201618819319910.1016/j.jep.2016.05.018 27178632
    [Google Scholar]
  14. PengK.Y. GuJ.F. SuS.L. ZhuY. GuoJ.M. QianD.W. DuanJ.A. Salvia miltiorrhiza stems and leaves total phenolic acids combination with tanshinone protect against DSS-induced ulcerative colitis through inhibiting TLR4/PI3K/AKT/mTOR signaling pathway in mice.J. Ethnopharmacol.202126411305210.1016/j.jep.2020.113052 32535239
    [Google Scholar]
  15. SuL. SuY. AnZ. ZhangP. YueQ. ZhaoC. SunX. ZhangS. LiuX. LiK. ZhaoL. Fermentation products of Danshen relieved dextran sulfate sodium-induced experimental ulcerative colitis in mice.Sci. Rep.20211111621010.1038/s41598‑021‑94594‑7 34376708
    [Google Scholar]
  16. ZhangY. LiS. Network Pharmacology and Several Advances in Modern Research of Traditional Chinese Medicine.Chin. J. Pharmacol. Toxicol.20152906883892
    [Google Scholar]
  17. ZhuangY. CaiB. ZhangZ. Application progress of network pharmacology in traditional Chinese medicine research.J. Nanjing Univ. Tradit. Chin. Med.20213701156160
    [Google Scholar]
  18. SafranM. DalahI. AlexanderJ. RosenN. Iny SteinT. ShmoishM. NativN. BahirI. DonigerT. KrugH. Sirota-MadiA. OlenderT. GolanY. StelzerG. HarelA. LancetD. GeneCards Version 3: The human gene integrator.Database (Oxford)20102010baq02010.1093/database/baq020 20689021
    [Google Scholar]
  19. PiñeroJ. BravoÀ. Queralt-RosinachN. Gutiérrez-SacristánA. Deu-PonsJ. CentenoE. García-GarcíaJ. SanzF. FurlongL.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants.Nucleic Acids Res.201745D1D833D83910.1093/nar/gkw943 27924018
    [Google Scholar]
  20. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx1037 29126136
    [Google Scholar]
  21. HamoshA. ScottA.F. AmbergerJ.S. BocchiniC.A. McKusickV.A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.Nucleic Acids Res.200433D514D51710.1093/nar/gki033 15608251
    [Google Scholar]
  22. DavisA.P. GrondinC.J. JohnsonR.J. SciakyD. WiegersJ. WiegersT.C. MattinglyC.J. Comparative Toxicogenomics Database (CTD): Update 2021.Nucleic Acids Res.202149D1D1138D114310.1093/nar/gkaa891 33068428
    [Google Scholar]
  23. HuangD.W. ShermanB.T. TanQ. KirJ. LiuD. BryantD. GuoY. StephensR. BaselerM.W. LaneH.C. LempickiR.A. DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists.Nucleic Acids Res.200735W169-7510.1093/nar/gkm415
    [Google Scholar]
  24. FuX. MervinL.H. LiX. YuH. LiJ. Mohamad ZobirS.Z. ZoufirA. ZhouY. SongY. WangZ. BenderA. Toward Understanding the Cold, Hot, and Neutral Nature of Chinese Medicines Using in Silico Mode-of-Action Analysis.J. Chem. Inf. Model.201757346848310.1021/acs.jcim.6b00725 28257573
    [Google Scholar]
  25. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  26. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  27. PawarS.S. RohaneS.H. Review on Discovery Studio: An important Tool for Molecular Docking.Asian J. Res. Chem20211411310.5958/0974‑4150.2021.00014.6
    [Google Scholar]
  28. JinX. AwaleM. ZassoM. KostroD. PatinyL. ReymondJ.L. PDB-Explorer: A web-based interactive map of the protein data bank in shape space.BMC Bioinformatics201516133910.1186/s12859‑015‑0776‑9 26493835
    [Google Scholar]
  29. GagnonJ.K. LawS.M. BrooksC.L.III Flexible CDOCKER: Development and application of a pseudo-explicit structure-based docking method within CHARMM.J. Comput. Chem.201637875376210.1002/jcc.24259 26691274
    [Google Scholar]
  30. ChengJ. YiX. ChenH. WangY. HeX. Anti-inflammatory phenylpropanoids and phenolics from Ficus hirta Vahl.Fitoterapia201712122923410.1016/j.fitote.2017.07.018 28782581
    [Google Scholar]
  31. HematpoorA. PaydarM. LiewS.Y. SivasothyY. MohebaliN. LooiC.Y. WongW.F. AzirunM.S. AwangK. Phenylpropanoids isolated from Piper sarmentosum Roxb. induce apoptosis in breast cancer cells through reactive oxygen species and mitochondrial-dependent pathways.Chem. Biol. Interact.201827921021810.1016/j.cbi.2017.11.014 29174417
    [Google Scholar]
  32. TavsanZ. KayaliH.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion.Biomed. Pharmacother.201911610900410.1016/j.biopha.2019.109004 31128404
    [Google Scholar]
  33. GüntherC. NeumannH. NeurathM.F. BeckerC. Apoptosis, necrosis and necroptosis: Cell death regulation in the intestinal epithelium.Gut20136271062107110.1136/gutjnl‑2011‑301364 22689519
    [Google Scholar]
  34. ChenQ. FangX. YaoN. WuF. XuB. ChenZ. Suppression of miR-330-3p alleviates DSS-induced ulcerative colitis and apoptosis by upregulating the endoplasmic reticulum stress components XBP1.Hereditas202015711810.1186/s41065‑020‑00135‑z 32386518
    [Google Scholar]
  35. FuY. YangG. ZhuF. PengC. LiW. LiH. KimH-G. BodeA.M. DongZ. DongZ. Antioxidants decrease the apoptotic effect of 5-Fu in colon cancer by regulating Src-dependent caspase-7 phosphorylation.Cell Death Dis.201451e98310.1038/cddis.2013.509 24407236
    [Google Scholar]
  36. LiP. NijhawanD. BudihardjoI. SrinivasulaS.M. AhmadM. AlnemriE.S. WangX. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade.Cell199791447948910.1016/S0092‑8674(00)80434‑1 9390557
    [Google Scholar]
  37. GuillerminO. AngelisN. SidorC.M. RidgwayR. BauliesA. KucharskaA. AntasP. RoseM.R. CorderoJ. SansomO. LiV.S.W. ThompsonB.J. Wnt and Src signals converge on YAP‐TEAD to drive intestinal regeneration.EMBO J.20214013e10577010.15252/embj.2020105770 33950519
    [Google Scholar]
  38. SteinbrecherK.A. Harmel-LawsE. SitcheranR. BaldwinA.S. Loss of epithelial RelA results in deregulated intestinal proliferative/apoptotic homeostasis and susceptibility to inflammation.J. Immunol.200818042588259910.4049/jimmunol.180.4.2588 18250470
    [Google Scholar]
  39. XuQ. TuJ. DouC. ZhangJ. YangL. LiuX. LeiK. LiuZ. WangY. LiL. BaoH. WangJ. TuK. HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma.Mol. Cancer201716117810.1186/s12943‑017‑0748‑y 29262861
    [Google Scholar]
  40. ValléeA. LecarpentierY. ValléeJ.N. Curcumin: A therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway.J. Exp. Clin. Cancer Res.201938132310.1186/s13046‑019‑1320‑y 31331376
    [Google Scholar]
  41. ZhuangJ.B. LiT. HuX.M. NingM. GaoW.Q. LangY.H. ZhengW.F. WeiJ. Circ_CHFR expedites cell growth, migration and inflammation in ox-LDL-treated human vascular smooth muscle cells via the miR-214-3p/Wnt3/β-catenin pathway.Eur. Rev. Med. Pharmacol. Sci.202024632823292 32271446
    [Google Scholar]
  42. MeepromA. ChanC.B. SompongW. AdisakwattanaS. Isoferulic acid attenuates methylglyoxal-induced apoptosis in INS-1 rat pancreatic β-cell through mitochondrial survival pathways and increasing glyoxalase-1 activity.Biomed. Pharmacother.201810177778510.1016/j.biopha.2018.01.017 29525672
    [Google Scholar]
  43. VazhappillyC.G. HodeifyR. SiddiquiS.S. LahamA.J. MenonV. El-AwadyR. MatarR. MerhebM. MartonJ. Al ZouabiH.A.K. RadhakrishnanR. Natural compound catechol induces DNA damage, apoptosis, and G1 cell cycle arrest in breast cancer cells.Phytother. Res.20213542185219910.1002/ptr.6970 33289235
    [Google Scholar]
  44. KooshaS. MohamedZ. SinniahA. IbrahimZ.A. SeyedanA. AlshawshM.A. Antiproliferative and apoptotic activities of 8-prenylnaringenin against human colon cancer cells.Life Sci.201923211663310.1016/j.lfs.2019.116633 31278947
    [Google Scholar]
  45. WangZ. WuX. WangC.L. WangL. SunC. ZhangD.B. LiuJ.L. LiangY.N. TangD.X. TangZ.S. Tryptanthrin Protects Mice against Dextran Sulfate Sodium-Induced Colitis through Inhibition of TNF-α/NF-κB and IL-6/STAT3 Pathways.Molecules2018235106210.3390/molecules23051062
    [Google Scholar]
  46. ChenX. LiangS. MaF. Effect of Danshen injection combined with mesalazine on serum HIF-1α and inflammatory cytokine levels in patients with mild to moderate active ulcerative colitis.Shanghai J Tradit Chin Med201852075558
    [Google Scholar]
  47. GuoY. WuX. WuQ. LuY. ShiJ. ChenX. DihydrotanshinoneI. Dihydrotanshinone I, a natural product, ameliorates DSS-induced experimental ulcerative colitis in mice.Toxicol. Appl. Pharmacol.2018344354510.1016/j.taap.2018.02.018 29496522
    [Google Scholar]
  48. XiuM. LiuY. ChenG. HuC. KuangB. Identifying Hub Genes, Key Pathways and Immune Cell Infiltration Characteristics in Pediatric and Adult Ulcerative Colitis by Integrated Bioinformatic Analysis.Dig. Dis. Sci.20216693002301410.1007/s10620‑020‑06611‑w 32974809
    [Google Scholar]
  49. WilliamsonL. AyalonI. ShenH. KaplanJ. Hepatic STAT3 inhibition amplifies the inflammatory response in obese mice during sepsis.Am. J. Physiol. Endocrinol. Metab.20193162E286E29210.1152/ajpendo.00341.2018 30576248
    [Google Scholar]
  50. SongJ. ZhangW. WangJ. YangH. ZhaoX. ZhouQ. WangH. LiL. DuG. Activation of Nrf2 signaling by salvianolic acid C attenuates NF κB mediated inflammatory response both in vivo and in vitro.Int. Immunopharmacol.20186329931010.1016/j.intimp.2018.08.004 30142530
    [Google Scholar]
  51. XuZ. KeT. ZhangY. GuoL. ChenF. HeW. Danshensu inhibits the IL-1β-induced inflammatory response in chondrocytes and osteoarthritis possibly via suppressing NF-κB signaling pathway.Mol. Med.20212718010.1186/s10020‑021‑00329‑9 34284715
    [Google Scholar]
/content/journals/cad/10.2174/0115734099318174240926103444
Loading
/content/journals/cad/10.2174/0115734099318174240926103444
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test