Skip to content
2000
image of Exploring the Potential Mechanisms of Danshen for the Treatment of Ulcerative Colitis based on Serum Pharmacochemistry, Gene Expression Profiling, and Network Pharmacology: Regulation of Cell Apoptosis and Inflammatory Response

Abstract

Background

As a traditional Chinese medicine, Danshen shows potential efficacy for treating ulcerative colitis (UC). However, the bioactive components and mode of action were unclear.

Aim of this Study

This paper uses a combination of network pharmacology, serum medicinal chemistry, and gene expression profiling to clarify its possible molecular mechanism of action and material basis.

Methods

Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was utilized to analyze the herbal components and metabolites from the serum of Danshen-treated mice. Gene expression profiles were applied to construct a database of Danshen action targets. Then, active ingredient-target-biological functional module networks were constructed to analyze the mechanism of action. Molecular docking has further confirmed the possibility of its components to the targets.

Results

As a result, 193 common targets between 1684 Danshen-related DEGs and 1492 UC targets were determined as the potential targets for Danshen in treatment with UC. Serum pharmacochemistry and target prediction showed that 22 components in serum acted on 777 targets. Intersection with common targets yielded 46 core targets, and an active ingredient-target-biological functional module network was constructed for analysis. Network prediction and molecular docking results showed that the main action modules were inflammatory response and cell apoptosis, which mainly acted on targets SRC, RELA, HSP90AA1, CTNNB1, STAT3, and CASP3. The main components of Danshen intervention in UC were predicted to include Catechol, 3,9-Dimethoxypterocarpan, 8-Prenylnaringenin, Isoferulic acid, Salvianolic acid C, and Danshensu.

Conclusion

The present study provides a scientific foundation for further explicating the mechanisms of Danshen against UC.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099313497240514072445
2024-10-24
2025-01-29
Loading full text...

Full text loading...

References

  1. Baumgart D.C. Sandborn W.J. Inflammatory bowel disease: Clinical aspects and established and evolving therapies. Lancet 2007 369 9573 1641 1657 10.1016/S0140‑6736(07)60751‑X 17499606
    [Google Scholar]
  2. Sclano G. Asthma, nasal polyposis and ulcerative colitis: A new perspective. Clin. Exp. Allergy 2002 32 8 1144 1149 10.1046/j.1365‑2745.2002.01460.x 12190649
    [Google Scholar]
  3. Ng S.C. Shi H.Y. Hamidi N. Underwood F.E. Tang W. Benchimol E.I. Panaccione R. Ghosh S. Wu J.C.Y. Chan F.K.L. Sung J.J.Y. Kaplan G.G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017 390 10114 2769 2778 10.1016/S0140‑6736(17)32448‑0 29050646
    [Google Scholar]
  4. Ungaro R. Mehandru S. Allen P.B. Peyrin-Biroulet L. Colombel J.F. Ulcerative colitis. Lancet 2017 389 10080 1756 1770 10.1016/S0140‑6736(16)32126‑2 27914657
    [Google Scholar]
  5. Sands B.E. Sandborn W.J. Panaccione R. O’Brien C.D. Zhang H. Johanns J. Adedokun O.J. Li K. Peyrin-Biroulet L. Van Assche G. Danese S. Targan S. Abreu M.T. Hisamatsu T. Szapary P. Marano C. Ustekinumab as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2019 381 13 1201 1214 10.1056/NEJMoa1900750 31553833
    [Google Scholar]
  6. Zeng S. Lin W. Luo P. Wei J. Liang Q. Huang G. Advances in traditional Chinese medicine treatment of ulcerative colitis. J Tradit Chin Med 2020 47 06 209 212
    [Google Scholar]
  7. Chen S. Liu X. Jun C. Dongyue Z. Treatment of 32 cases of ulcerative colitis of dampness heat accumulation type with changqingshu formula. Clin. Med. Res. 2021 34 08 21 24
    [Google Scholar]
  8. Sun Y. Gao C. Peng Z. Clinical study on modified Pulsatilla Decoction enema in the treatment of chronic ulcerative colitis. Chin J Anorectal Diseases 2021 41 03 60 61
    [Google Scholar]
  9. Yan Z. Liu Y. Ma T. Xu M. Zhang X. Zha X. Yang J. Jiang P. Chen X. Lin Z. Wu Y. Zu R. Lin W. Lin X. Efficacy and safety of retention enema with traditional Chinese medicine for ulcerative colitis: A meta-analysis of randomized controlled trials. Complement. Ther. Clin. Pract. 2021 42 101278 10.1016/j.ctcp.2020.101278 33276227
    [Google Scholar]
  10. Zhu C. Clinical significance of modified Banxia Xiexin Decoction in the treatment of chronic gastritis complicated with ulcerative colitis. Heilongjiang Trad Chin Med 2021 50 04 107 108
    [Google Scholar]
  11. Zhang X. Therapeutic effect of Shenling Baizhu powder combined with traditional Chinese medicine retention enema on ulcerative colitis of spleen stomach weakness type. Liaoning Zhongyiyao Daxue Xuebao 2017 19 03 187 190
    [Google Scholar]
  12. Lan J. Li K. Gresham A. Miao J. Tanshinone IIA sodium sulfonate attenuates inflammation by upregulating circ-Sirt1 and inhibiting the entry of NF-κB into the nucleus. Eur. J. Pharmacol. 2022 914 174693 10.1016/j.ejphar.2021.174693 34896110
    [Google Scholar]
  13. Ma S. Zhang D. Lou H. Sun L. Ji J. Evaluation of the anti-inflammatory activities of tanshinones isolated from Salvia miltiorrhiza var. alba roots in THP-1 macrophages. J. Ethnopharmacol. 2016 188 193 199 10.1016/j.jep.2016.05.018 27178632
    [Google Scholar]
  14. Peng K.Y. Gu J.F. Su S.L. Zhu Y. Guo J.M. Qian D.W. Duan J.A. Salvia miltiorrhiza stems and leaves total phenolic acids combination with tanshinone protect against DSS-induced ulcerative colitis through inhibiting TLR4/PI3K/AKT/mTOR signaling pathway in mice. J. Ethnopharmacol. 2021 264 113052 10.1016/j.jep.2020.113052 32535239
    [Google Scholar]
  15. Su L. Su Y. An Z. Zhang P. Yue Q. Zhao C. Sun X. Zhang S. Liu X. Li K. Zhao L. Fermentation products of Danshen relieved dextran sulfate sodium-induced experimental ulcerative colitis in mice. Sci. Rep. 2021 11 1 16210 10.1038/s41598‑021‑94594‑7 34376708
    [Google Scholar]
  16. Zhang Y. Li S. Network Pharmacology and Several Advances in Modern Research of Traditional Chinese Medicine. Chin. J. Pharmacol. Toxicol. 2015 29 06 883 892
    [Google Scholar]
  17. Zhuang Y. Cai B. Zhang Z. Application progress of network pharmacology in traditional Chinese medicine research. J. Nanjing Univ. Tradit. Chin. Med. 2021 37 01 156 160
    [Google Scholar]
  18. Safran M. Dalah I. Alexander J. Rosen N. Iny Stein T. Shmoish M. Nativ N. Bahir I. Doniger T. Krug H. Sirota-Madi A. Olender T. Golan Y. Stelzer G. Harel A. Lancet D. GeneCards Version 3: The human gene integrator. Database (Oxford) 2010 2010 baq020 10.1093/database/baq020 20689021
    [Google Scholar]
  19. Piñero J. Bravo À. Queralt-Rosinach N. Gutiérrez-Sacristán A. Deu-Pons J. Centeno E. García-García J. Sanz F. Furlong L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017 45 D1 D833 D839 10.1093/nar/gkw943 27924018
    [Google Scholar]
  20. Wishart D.S. Feunang Y.D. Guo A.C. Lo E.J. Marcu A. Grant J.R. Sajed T. Johnson D. Li C. Sayeeda Z. Assempour N. Iynkkaran I. Liu Y. Maciejewski A. Gale N. Wilson A. Chin L. Cummings R. Le D. Pon A. Knox C. Wilson M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 46 D1 D1074 D1082 10.1093/nar/gkx1037 29126136
    [Google Scholar]
  21. Hamosh A. Scott A.F. Amberger J.S. Bocchini C.A. McKusick V.A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2004 33 D514 D517 10.1093/nar/gki033 15608251
    [Google Scholar]
  22. Davis A.P. Grondin C.J. Johnson R.J. Sciaky D. Wiegers J. Wiegers T.C. Mattingly C.J. Comparative Toxicogenomics Database (CTD): Update 2021. Nucleic Acids Res. 2021 49 D1 D1138 D1143 10.1093/nar/gkaa891 33068428
    [Google Scholar]
  23. Huang D. W. Sherman B. T. Tan Q. Kir J. Liu D. Bryant D. Guo Y. Stephens R. Baseler M. W. Lane H. C. Lempicki R. A. DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 2007 35 W169 75 10.1093/nar/gkm415
    [Google Scholar]
  24. Fu X. Mervin L.H. Li X. Yu H. Li J. Mohamad Zobir S.Z. Zoufir A. Zhou Y. Song Y. Wang Z. Bender A. Toward Understanding the Cold, Hot, and Neutral Nature of Chinese Medicines Using in Silico Mode-of-Action Analysis. J. Chem. Inf. Model. 2017 57 3 468 483 10.1021/acs.jcim.6b00725 28257573
    [Google Scholar]
  25. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  26. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  27. Pawar S.S. Rohane S.H. Review on Discovery Studio: An important Tool for Molecular Docking. Asian J. Res. Chem 2021 14 1 1 3 10.5958/0974‑4150.2021.00014.6
    [Google Scholar]
  28. Jin X. Awale M. Zasso M. Kostro D. Patiny L. Reymond J.L. PDB-Explorer: A web-based interactive map of the protein data bank in shape space. BMC Bioinformatics 2015 16 1 339 10.1186/s12859‑015‑0776‑9 26493835
    [Google Scholar]
  29. Gagnon J.K. Law S.M. Brooks C.L. III Flexible CDOCKER: Development and application of a pseudo-explicit structure-based docking method within CHARMM. J. Comput. Chem. 2016 37 8 753 762 10.1002/jcc.24259 26691274
    [Google Scholar]
  30. Cheng J. Yi X. Chen H. Wang Y. He X. Anti-inflammatory phenylpropanoids and phenolics from Ficus hirta Vahl. Fitoterapia 2017 121 229 234 10.1016/j.fitote.2017.07.018 28782581
    [Google Scholar]
  31. Hematpoor A. Paydar M. Liew S.Y. Sivasothy Y. Mohebali N. Looi C.Y. Wong W.F. Azirun M.S. Awang K. Phenylpropanoids isolated from Piper sarmentosum Roxb. induce apoptosis in breast cancer cells through reactive oxygen species and mitochondrial-dependent pathways. Chem. Biol. Interact. 2018 279 210 218 10.1016/j.cbi.2017.11.014 29174417
    [Google Scholar]
  32. Tavsan Z. Kayali H.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed. Pharmacother. 2019 116 109004 10.1016/j.biopha.2019.109004 31128404
    [Google Scholar]
  33. Günther C. Neumann H. Neurath M.F. Becker C. Apoptosis, necrosis and necroptosis: Cell death regulation in the intestinal epithelium. Gut 2013 62 7 1062 1071 10.1136/gutjnl‑2011‑301364 22689519
    [Google Scholar]
  34. Chen Q. Fang X. Yao N. Wu F. Xu B. Chen Z. Suppression of miR-330-3p alleviates DSS-induced ulcerative colitis and apoptosis by upregulating the endoplasmic reticulum stress components XBP1. Hereditas 2020 157 1 18 10.1186/s41065‑020‑00135‑z 32386518
    [Google Scholar]
  35. Fu Y. Yang G. Zhu F. Peng C. Li W. Li H. Kim H-G. Bode A.M. Dong Z. Dong Z. Antioxidants decrease the apoptotic effect of 5-Fu in colon cancer by regulating Src-dependent caspase-7 phosphorylation. Cell Death Dis. 2014 5 1 e983 10.1038/cddis.2013.509 24407236
    [Google Scholar]
  36. Li P. Nijhawan D. Budihardjo I. Srinivasula S.M. Ahmad M. Alnemri E.S. Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997 91 4 479 489 10.1016/S0092‑8674(00)80434‑1 9390557
    [Google Scholar]
  37. Guillermin O. Angelis N. Sidor C.M. Ridgway R. Baulies A. Kucharska A. Antas P. Rose M.R. Cordero J. Sansom O. Li V.S.W. Thompson B.J. Wnt and Src signals converge on YAP‐TEAD to drive intestinal regeneration. EMBO J. 2021 40 13 e105770 10.15252/embj.2020105770 33950519
    [Google Scholar]
  38. Steinbrecher K.A. Harmel-Laws E. Sitcheran R. Baldwin A.S. Loss of epithelial RelA results in deregulated intestinal proliferative/apoptotic homeostasis and susceptibility to inflammation. J. Immunol. 2008 180 4 2588 2599 10.4049/jimmunol.180.4.2588 18250470
    [Google Scholar]
  39. Xu Q. Tu J. Dou C. Zhang J. Yang L. Liu X. Lei K. Liu Z. Wang Y. Li L. Bao H. Wang J. Tu K. HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma. Mol. Cancer 2017 16 1 178 10.1186/s12943‑017‑0748‑y 29262861
    [Google Scholar]
  40. Vallée A. Lecarpentier Y. Vallée J.N. Curcumin: A therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J. Exp. Clin. Cancer Res. 2019 38 1 323 10.1186/s13046‑019‑1320‑y 31331376
    [Google Scholar]
  41. Zhuang J.B. Li T. Hu X.M. Ning M. Gao W.Q. Lang Y.H. Zheng W.F. Wei J. Circ_CHFR expedites cell growth, migration and inflammation in ox-LDL-treated human vascular smooth muscle cells via the miR-214-3p/Wnt3/β-catenin pathway. Eur. Rev. Med. Pharmacol. Sci. 2020 24 6 3282 3292 32271446
    [Google Scholar]
  42. Meeprom A. Chan C.B. Sompong W. Adisakwattana S. Isoferulic acid attenuates methylglyoxal-induced apoptosis in INS-1 rat pancreatic β-cell through mitochondrial survival pathways and increasing glyoxalase-1 activity. Biomed. Pharmacother. 2018 101 777 785 10.1016/j.biopha.2018.01.017 29525672
    [Google Scholar]
  43. Vazhappilly C.G. Hodeify R. Siddiqui S.S. Laham A.J. Menon V. El-Awady R. Matar R. Merheb M. Marton J. Al Zouabi H.A.K. Radhakrishnan R. Natural compound catechol induces DNA damage, apoptosis, and G1 cell cycle arrest in breast cancer cells. Phytother. Res. 2021 35 4 2185 2199 10.1002/ptr.6970 33289235
    [Google Scholar]
  44. Koosha S. Mohamed Z. Sinniah A. Ibrahim Z.A. Seyedan A. Alshawsh M.A. Antiproliferative and apoptotic activities of 8-prenylnaringenin against human colon cancer cells. Life Sci. 2019 232 116633 10.1016/j.lfs.2019.116633 31278947
    [Google Scholar]
  45. Wang Z. Wu X. Wang C.L. Wang L. Sun C. Zhang D.B. Liu J.L. Liang Y.N. Tang D.X. Tang Z.S. Tryptanthrin Protects Mice against Dextran Sulfate Sodium-Induced Colitis through Inhibition of TNF-α/NF-κB and IL-6/STAT3 Pathways. Molecules 2018 23 5 1062 10.3390/molecules23051062
    [Google Scholar]
  46. Chen X. Liang S. Ma F. Effect of Danshen injection combined with mesalazine on serum HIF-1α and inflammatory cytokine levels in patients with mild to moderate active ulcerative colitis. Shanghai J Tradit Chin Med 2018 52 07 55 58
    [Google Scholar]
  47. Guo Y. Wu X. Wu Q. Lu Y. Shi J. Chen X. Dihydrotanshinone I. Dihydrotanshinone I, a natural product, ameliorates DSS-induced experimental ulcerative colitis in mice. Toxicol. Appl. Pharmacol. 2018 344 35 45 10.1016/j.taap.2018.02.018 29496522
    [Google Scholar]
  48. Xiu M. Liu Y. Chen G. Hu C. Kuang B. Identifying Hub Genes, Key Pathways and Immune Cell Infiltration Characteristics in Pediatric and Adult Ulcerative Colitis by Integrated Bioinformatic Analysis. Dig. Dis. Sci. 2021 66 9 3002 3014 10.1007/s10620‑020‑06611‑w 32974809
    [Google Scholar]
  49. Williamson L. Ayalon I. Shen H. Kaplan J. Hepatic STAT3 inhibition amplifies the inflammatory response in obese mice during sepsis. Am. J. Physiol. Endocrinol. Metab. 2019 316 2 E286 E292 10.1152/ajpendo.00341.2018 30576248
    [Google Scholar]
  50. Song J. Zhang W. Wang J. Yang H. Zhao X. Zhou Q. Wang H. Li L. Du G. Activation of Nrf2 signaling by salvianolic acid C attenuates NF‑κB mediated inflammatory response both in vivo and in vitro . Int. Immunopharmacol. 2018 63 299 310 10.1016/j.intimp.2018.08.004 30142530
    [Google Scholar]
  51. Xu Z. Ke T. Zhang Y. Guo L. Chen F. He W. Danshensu inhibits the IL-1β-induced inflammatory response in chondrocytes and osteoarthritis possibly via suppressing NF-κB signaling pathway. Mol. Med. 2021 27 1 80 10.1186/s10020‑021‑00329‑9 34284715
    [Google Scholar]
/content/journals/cad/10.2174/0115734099313497240514072445
Loading
/content/journals/cad/10.2174/0115734099313497240514072445
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test