Skip to content
2000
image of Anti-Inflammatory Potential of Costus speciosus rhizome Bioactive Phytochemicals: A Combined GC-MS and Computational Approach Targeting TLR-4 Signaling

Abstract

Background

Plants represent a rich reservoir of bioactive compounds with established therapeutic value in diverse diseases. Notably, the Toll-like receptor-4 (TLR-4) signaling pathway plays a pivotal role in inflammation. Upon engagement with pro-inflammatory ligands like lipopolysaccharide, TLR-4 triggers downstream cascades involving nuclear factor ĸappa B and mitogen-activated protein kinases. This signaling cascade ultimately dictates the onset and progression of inflammatory diseases. Therefore, targeting TLR-4 signaling offers a promising therapeutic approach for managing inflammatory disorders.

Methods

This study investigated the potential of rhizome phytocompounds, a traditional medicinal plant, as novel as modulators of TLR-4 signaling, highlighting their mechanisms of action and potential clinical applications. In the present study, 18 phytocompounds isolated from the rhizome of , were studied against TLR-4/AP-1 signaling, which is implicated in the inflammatory process using a computational approach.

Results

The compounds exhibited binding affinities ranging from -4.087 to -8.93 with the TLR-4 protein due to the formation of multiple intermolecular interactions. Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester (compound 7) exhibited exceptional binding energy (-8.93 kcal/mol), indicating strong affinity for the TLR-4 protein. Additionally, compound 7 displayed favorable ADMET properties, suggesting promising drug development potential. Molecular dynamics simulations confirmed the stability of the compound 7-TLR4 complex, further supporting its ability to modulate TLR-4 signaling.

Conclusion

These findings highlight the therapeutic potential of phytocompounds, particularly compound 7, as potent anti-inflammatory modulators. Further research is warranted to validate their anti-inflammatory and neuroprotective effects in pre-clinical models, paving the way for their development as novel therapeutic agents for inflammatory diseases.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099309926241007055607
2024-10-16
2025-01-18
Loading full text...

Full text loading...

References

  1. Medzhitov R. Origin and physiological roles of inflammation. Nature 2008 454 7203 428 35 10.1038/nature07201
    [Google Scholar]
  2. Greten F.R. Grivennikov S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019 51 1 27 41 10.1016/j.immuni.2019.06.025 31315034
    [Google Scholar]
  3. Arnold N. Lechner K. Waldeyer C. Shapiro M.D. Koenig W. Inflammation and Cardiovascular Disease: The Future. Eur. Cardiol. 2021 16 e20 10.15420/ecr.2020.50 34093741
    [Google Scholar]
  4. Duan L. Rao X. Sigdel K.R. Regulation of inflammation in autoimmune disease. J. Immunol. Res. 2019 2019 1 2 10.1155/2019/7403796 30944837
    [Google Scholar]
  5. Chen L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018 9 6 7204 7218
    [Google Scholar]
  6. Pant M. Dan S. Pant S. Raj A. Upadhyay S. K. Progression in Alzheimer’s Disease Correlates With Epigenetics and Cerebral Formaldehyde: From Potential Hereditary Mechanism and Environmental Factors to Therapeutic Measures. Curr Pharmacol Rep 2021 7 187 205 10.1007/s40495‑021‑00265‑6
    [Google Scholar]
  7. Wang S. Song R. Wang Z. Jing Z. Wang S. Ma J. S100A8/A9 in Inflammation. Front. Immunol. 2018 9 JUN 1298 10.3389/fimmu.2018.01298 29942307
    [Google Scholar]
  8. Kwon H. S. Koh S. H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 2020 9 42 10.1186/s40035‑020‑00221‑2
    [Google Scholar]
  9. Scheller J. Chalaris A. Schmidt-Arras D. Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta Mol. Cell Res. 2011 1813 5 878 888 10.1016/j.bbamcr.2011.01.034 21296109
    [Google Scholar]
  10. Ren K. Torres R. Role of interleukin-1β during pain and inflammation. Brain Res. Brain Res. Rev. 2009 60 1 57 64 10.1016/j.brainresrev.2008.12.020 19166877
    [Google Scholar]
  11. Uciechowski P. Dempke W.C.M. Interleukin-6: A Masterplayer in the Cytokine Network. Oncology 2020 98 3 131 137 10.1159/000505099 31958792
    [Google Scholar]
  12. Jang D. Lee A.H. Shin H.Y. Song H.R. Park J.H. Kang T.B. Lee S.R. Yang S.H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021 22 5 2719 10.3390/ijms22052719 33800290
    [Google Scholar]
  13. Khan A. Khan S.U. Khan A. Shal B. Rehman S.U. Rehman S.U. Htar T.T. Khan S. Anwar S. Alafnan A. Rengasamy K.R.R. Anti-Inflammatory and Anti-Rheumatic Potential of Selective Plant Compounds by Targeting TLR-4/AP-1 Signaling: A Comprehensive Molecular Docking and Simulation Approaches. Molecules 2022 27 13 4319 10.3390/molecules27134319 35807562
    [Google Scholar]
  14. Zhang W. Xiao D. Mao Q. Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther. 2023 8 1 267 10.1038/s41392‑023‑01486‑5
    [Google Scholar]
  15. Lokhande K.B. Tiwari A. Gaikwad S. Kore S. Nawani N. Wani M. Swamy K.V. Pawar S.V. Computational docking investigation of phytocompounds from bergamot essential oil against Serratia marcescens protease and FabI: Alternative pharmacological strategy. Comput. Biol. Chem. 2023 104 107829 10.1016/j.compbiolchem.2023.107829 36842391
    [Google Scholar]
  16. Ahmad Khan M.S. Ahmad I. Herbal Medicine. New Look to Phytomedicine: Advancements in Herbal Products as Novel Drug Leads 2019 Jan 3 13 10.1016/B978‑0‑12‑814619‑4.00001‑X
    [Google Scholar]
  17. Li F.S. Weng J.K. Demystifying traditional herbal medicine with modern approach. Nat. Plants 2017 3 8 17109 10.1038/nplants.2017.109 28758992
    [Google Scholar]
  18. Prasathkumar M. Anisha S. Dhrisya C. Becky R. Sadhasivam S. Therapeutic and pharmacological efficacy of selective Indian medicinal plants – A review. Phytomedicine Plus 2021 1 2 100029 10.1016/j.phyplu.2021.100029
    [Google Scholar]
  19. Tasneem S. Liu B. Li B. Choudhary M.I. Wang W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol. Res. 2019 139 126 140 10.1016/j.phrs.2018.11.001 30395947
    [Google Scholar]
  20. Das K. Herbal plants as immunity modulators against COVID-19: A primary preventive measure during home quarantine. J. Herb. Med. 2022 32 100501 10.1016/j.hermed.2021.100501 34377631
    [Google Scholar]
  21. Parham S. Kharazi A.Z. Bakhsheshi-Rad H.R. Nur H. Ismail A.F. Sharif S. RamaKrishna S. Berto F. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants 2020 9 12 1309 10.3390/antiox9121309 33371338
    [Google Scholar]
  22. Selim S. Al Jaouni S. Anticancer and apoptotic effects on cell proliferation of diosgenin isolated from Costus speciosus (Koen.) Sm. BMC Complement. Altern. Med. 2015 15 1 301 10.1186/s12906‑015‑0836‑8 26329920
    [Google Scholar]
  23. Sabitha Rani A. Sulakshana G. Patnaik S. Costus speciosus, An antidiabetic plant-review. FS J Pharm Res 2012 1 52
    [Google Scholar]
  24. Saraf A. Phytochemical and Antimicrobial Studies of Medicinal Plant Costus Speciosus (Koen.). J. Chem. 2010 7 605735 10.1155/2010/605735
    [Google Scholar]
  25. Nehete J. Bhatia M. Narkhede M. In-vitro Evaluation of Antioxidant Activity and Phenolic Content of Costus speciosus (Koen) J.E. Sm. Iran. J. Pharm. Res. 2010 9 3 271 277 24363737
    [Google Scholar]
  26. Mahendranathan C. Abhayarathne A. Lk C. A. Efficacy of different solvent extracts from the aerial parts of Costus speciosus (Koen.) for the potential antibacterial activity against selected human pathogenic bacteria. 2021 10.47119/IJRP100781620211977
    [Google Scholar]
  27. Kala C. Ali S. S. Abid M. Sharma U. S. Khan N. A. Evaluation of in-vivo antiarthritic potential of methanolic extract of Costus speciosus rhizome. JAPS 2015 5 8 10.7324/JAPS.2015.50808
    [Google Scholar]
  28. AlSaadi B.H. AlHarbi S.H. Ibrahim S.R.M. El-Kholy A.A. El-Agamy D.S. Mohamed G.A. Hepatoprotective activity of Costus speciosus (KOEN. EX. RETZ.) against paracetamol-induced liver injury in mice. Afr. J. Tradit. Complement. Altern. Med. 2018 15 2 35 41 10.21010/ajtcamv15i2.5
    [Google Scholar]
  29. Bavarva J.H. Narasimhacharya A.V.R.L. Antihyperglycemic and hypolipidemic effects of Costus speciosus in alloxan induced diabetic rats. Phytother. Res. 2008 22 5 620 626 10.1002/ptr.2302 18444247
    [Google Scholar]
  30. Sohrab S. Mishra P. Mishra S.K. Phytochemical competence and pharmacological perspectives of an endangered boon—Costus speciosus (Koen.) Sm.: A comprehensive review. Bull. Natl. Res. Cent. 2021 45 1 209 10.1186/s42269‑021‑00663‑2
    [Google Scholar]
  31. Gheraibia S. Belattar N. Abdel-Wahhab M.A. HPLC analysis, antioxidant and cytotoxic activity of different extracts of Costus speciosus against HePG-2 cell lines. S. Afr. J. Bot. 2020 131 222 228 10.1016/j.sajb.2020.02.019
    [Google Scholar]
  32. Waisundara V.Y. Watawana M.I. Jayawardena N. Costus speciosus and Coccinia grandis : Traditional medicinal remedies for diabetes. S. Afr. J. Bot. 2015 98 1 5 10.1016/j.sajb.2015.01.012
    [Google Scholar]
  33. Maji P. Ghosh Dhar D. Misra P. Dhar P. Costus speciosus (Koen ex. Retz.) Sm.: Current status and future industrial prospects. Ind. Crops Prod. 2020 152 112571 10.1016/j.indcrop.2020.112571
    [Google Scholar]
  34. Al-Attas A.A.M. El-Shaer N.S. Mohamed G.A. Ibrahim S.R.M. Esmat A. Anti-inflammatory sesquiterpenes from Costus speciosus rhizomes. J. Ethnopharmacol. 2015 176 365 374 10.1016/j.jep.2015.11.026 26593213
    [Google Scholar]
  35. Kim J.K. Park S.U. An update on the biological and pharmacological activities of diosgenin. EXCLI J. 2018 17 24 28 10.17179/EXCLI2017‑894 29383016
    [Google Scholar]
  36. Inoue K. Ebizuka Y. Purification and characterization of furostanol glycoside 26‐ Oβ ‐glucosidase from Costus speciosus rhizomes. FEBS Lett. 1996 378 2 157 160 10.1016/0014‑5793(95)01447‑0 8549824
    [Google Scholar]
  37. Srivastava S. Singh P. Costus speciosus (Keukand): A review. Der Pharmacia Sinica 2011 2 1 118 128
    [Google Scholar]
  38. Shal B. Ding W. Ali H. Kim Y.S. Khan S. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front. Pharmacol. 2018 9 MAY 548 10.3389/fphar.2018.00548 29896105
    [Google Scholar]
  39. Calvo-Rodriguez M. García-Rodríguez C. Villalobos C. Núñez L. Role of Toll Like Receptor 4 in Alzheimer’s Disease. Front. Immunol. 2020 11 1588 10.3389/fimmu.2020.01588 32983082
    [Google Scholar]
  40. Ciesielska A. Matyjek M. Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell. Mol. Life Sci. 2021 78 4 1233 1261 10.1007/s00018‑020‑03656‑y 33057840
    [Google Scholar]
  41. Takeuchi O. Akira S. Pattern recognition receptors and inflammation. Cell 2010 140 6 805 820 10.1016/j.cell.2010.01.022 20303872
    [Google Scholar]
  42. Płóciennikowska A. Hromada-Judycka A. Borzęcka K. Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell. Mol. Life Sci. 2015 72 3 557 581 10.1007/s00018‑014‑1762‑5 25332099
    [Google Scholar]
  43. Prymas K. Świątkowska A. Traczyk G. Ziemlińska E. Dziewulska A. Ciesielska A. Kwiatkowska K. Sphingomyelin synthase activity affects TRIF-dependent signaling of Toll-like receptor 4 in cells stimulated with lipopolysaccharide. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020 1865 2 158549 10.1016/j.bbalip.2019.158549 31678513
    [Google Scholar]
  44. El-Zayat S.R. Sibaii H. Mannaa F.A. Toll-like receptors activation, signaling, and targeting: an overview. Bull. Natl. Res. Cent. 2019 43 1 187 10.1186/s42269‑019‑0227‑2
    [Google Scholar]
  45. Wei J. Zhang Y. Li H. Wang F. Yao S. Toll-like receptor 4: A potential therapeutic target for multiple human diseases. Biomed. Pharmacother. 2023 166 115338 10.1016/j.biopha.2023.115338 37595428
    [Google Scholar]
  46. Zusso M. Lunardi V. Franceschini D. Pagetta A. Lo R. Stifani S. Frigo A.C. Giusti P. Moro S. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J. Neuroinflammation 2019 16 1 148 10.1186/s12974‑019‑1538‑9 31319868
    [Google Scholar]
  47. Gorecki A. M. Anyaegbu C. C. Anderton R. S. TLR2 and TLR4 in Parkinson's disease pathogenesis: the environment takes a toll on the gut. Transl Neurodegener. 2021 10 1 47 10.1186/s40035‑021‑00271‑0
    [Google Scholar]
  48. Krishnan M. Choi J. Jang A. Choi S. Yeon J. Jang M. Lee Y. Son K. Shin S.Y. Jeong M.S. Kim Y. Molecular mechanism underlying the TLR4 antagonistic and antiseptic activities of papiliocin, an insect innate immune response molecule. Proc. Natl. Acad. Sci. USA 2022 119 10 e2115669119 10.1073/pnas.2115669119 35238667
    [Google Scholar]
  49. Dheen T. Baby N. Pitchai D. Indraswari F. Ling E.A. Lu J. Dheen T. Costunolide inhibits proinflammatory cytokines and iNOS in activated murine BV2 microglia. Front. Biosci. (Elite Ed.) 2011 E3 3 1079 1091 10.2741/e312 21622115
    [Google Scholar]
  50. Gárate I. Garcia-Bueno B. Madrigal J.L.M. Caso J.R. Alou L. Gomez-Lus M.L. Micó J.A. Leza J.C. Stress-induced neuroinflammation: role of the Toll-like receptor-4 pathway. Biol. Psychiatry 2013 73 1 32 43 10.1016/j.biopsych.2012.07.005 22906518
    [Google Scholar]
  51. de Bono B. Toll Like Receptor 4 (TLR4) Cascade. 2008 10.3180/REACT_6894.8
    [Google Scholar]
  52. Eliza J. Daisy P. Ignacimuthu S. Duraipandiyan V. Antidiabetic and antilipidemic effect of eremanthin from Costus speciosus (Koen.)Sm., in STZ-induced diabetic rats. Chem. Biol. Interact. 2009 182 1 67 72 10.1016/j.cbi.2009.08.012 19695236
    [Google Scholar]
  53. PerkinElmer, Clarus 600/560 D Gas Chromatograph/Mass Spectrometer (GC/MS). 2007
    [Google Scholar]
  54. Anand D. Phytochemical analysis of Ficus arnottiana (Miq.) Miq. leaf extract using GC-MS analysis. International Journal of Pharmacognosy and Phytochemical Research 2017 9 6 7 12 10.25258/phyto.v9i6.8177
    [Google Scholar]
  55. Madhavi Sastry G. Adzhigirey M. Day T. Annabhimoju R. Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013 27 3 221 234 10.1007/s10822‑013‑9644‑8 23579614
    [Google Scholar]
  56. Roos K. Wu C. Damm W. Reboul M. Stevenson J.M. Lu C. Dahlgren M.K. Mondal S. Chen W. Wang L. Abel R. Friesner R.A. Harder E.D. OPLS3e: Extending force field coverage for drug-like small molecules. J. Chem. Theory Comput. 2019 15 3 1863 1874 10.1021/acs.jctc.8b01026 30768902
    [Google Scholar]
  57. Harder E. Damm W. Maple J. Wu C. Reboul M. Xiang J.Y. Wang L. Lupyan D. Dahlgren M.K. Knight J.L. Kaus J.W. Cerutti D.S. Krilov G. Jorgensen W.L. Abel R. Friesner R.A. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016 12 1 281 296 10.1021/acs.jctc.5b00864 26584231
    [Google Scholar]
  58. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem 2023 update. Nucleic Acids Res. 2023 51 D1 D1373 D1380 10.1093/nar/gkac956 36305812
    [Google Scholar]
  59. Shelley J.C. Cholleti A. Frye L.L. Greenwood J.R. Timlin M.R. Uchimaya M. Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 2007 21 12 681 691 10.1007/s10822‑007‑9133‑z 17899391
    [Google Scholar]
  60. Greenwood J.R. Calkins D. Sullivan A.P. Shelley J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des. 2010 24 6-7 591 604 10.1007/s10822‑010‑9349‑1 20354892
    [Google Scholar]
  61. Lu C. Wu C. Ghoreishi D. Chen W. Wang L. Damm W. Ross G.A. Dahlgren M.K. Russell E. Von Bargen C.D. Abel R. Friesner R.A. Harder E.D. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021 17 7 4291 4300 10.1021/acs.jctc.1c00302 34096718
    [Google Scholar]
  62. Lipinski C. A. Lombardo F. Dominy B. W. Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 2012 64 4 17 10.1016/j.addr.2012.09.019
    [Google Scholar]
  63. Ioakimidis L. Thoukydidis L. Mirza A. Naeem S. Reynisson J. Benchmarking the Reliability of QikProp. Correlation between Experimental and Predicted Values. QSAR Comb. Sci. 2008 27 4 445 456 10.1002/qsar.200730051
    [Google Scholar]
  64. Bowers K.J. Scalable algorithms for molecular dynamics simulations on commodity clusters Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06 2006 10.1109/SC.2006.54
    [Google Scholar]
  65. Halgren T.A. Murphy R.B. Friesner R.A. Beard H.S. Frye L.L. Pollard W.T. Banks J.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004 47 7 1750 1759 10.1021/jm030644s 15027866
    [Google Scholar]
  66. Vass M. Tarcsay Á. Keserű G.M. Multiple ligand docking by Glide: implications for virtual second-site screening. J. Comput. Aided Mol. Des. 2012 26 7 821 834 10.1007/s10822‑012‑9578‑6 22639078
    [Google Scholar]
  67. Friesner R.A. Murphy R.B. Repasky M.P. Frye L.L. Greenwood J.R. Halgren T.A. Sanschagrin P.C. Mainz D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006 49 21 6177 6196 10.1021/jm051256o 17034125
    [Google Scholar]
  68. Shivakumar D. Williams J. Wu Y. Damm W. Shelley J. Sherman W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the opls force field. J. Chem. Theory Comput. 2010 6 5 1509 1519 10.1021/ct900587b 26615687
    [Google Scholar]
  69. Kurki M. Poso A. Bartos P. Miettinen M.S. Structure of POPC Lipid Bilayers in OPLS3e Force Field. J. Chem. Inf. Model. 2022 62 24 6462 6474 10.1021/acs.jcim.2c00395 36044537
    [Google Scholar]
  70. Ikeguchi M. Partial rigid‐body dynamics in NPT, NPAT and NPγT ensembles for proteins and membranes. J. Comput. Chem. 2004 25 4 529 541 10.1002/jcc.10402 14735571
    [Google Scholar]
  71. Kawata M. Nagashima U. Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity. Chem. Phys. Lett. 2001 340 1-2 165 172 10.1016/S0009‑2614(01)00393‑1
    [Google Scholar]
  72. Martyna G.J. Tobias D.J. Klein M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994 101 5 4177 4189 10.1063/1.467468
    [Google Scholar]
  73. Martyna G.J. Klein M.L. Tuckerman M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992 97 4 2635 2643 10.1063/1.463940
    [Google Scholar]
  74. Tuckerman M. Berne B.J. Martyna G.J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 1992 97 3 1990 2001 10.1063/1.463137
    [Google Scholar]
/content/journals/cad/10.2174/0115734099309926241007055607
Loading
/content/journals/cad/10.2174/0115734099309926241007055607
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test