Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Plants represent a rich reservoir of bioactive compounds with established therapeutic value in diverse diseases. Notably, the Toll-like receptor-4 (TLR-4) signaling pathway plays a pivotal role in inflammation. Upon engagement with pro-inflammatory ligands like lipopolysaccharide, TLR-4 triggers downstream cascades involving nuclear factor ĸappa B and mitogen-activated protein kinases. This signaling cascade ultimately dictates the onset and progression of inflammatory diseases. Therefore, targeting TLR-4 signaling offers a promising therapeutic approach for managing inflammatory disorders.

Methods

This study investigated the potential of rhizome phytocompounds, a traditional medicinal plant, as novel as modulators of TLR-4 signaling, highlighting their mechanisms of action and potential clinical applications. In the present study, 18 phytocompounds isolated from the rhizome of , were studied against TLR-4/AP-1 signaling, which is implicated in the inflammatory process using a computational approach.

Results

The compounds exhibited binding affinities ranging from -4.087 to -8.93 with the TLR-4 protein due to the formation of multiple intermolecular interactions. Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester (compound 7) exhibited exceptional binding energy (-8.93 kcal/mol), indicating strong affinity for the TLR-4 protein. Additionally, compound 7 displayed favorable ADMET properties, suggesting promising drug development potential. Molecular dynamics simulations confirmed the stability of the compound 7-TLR4 complex, further supporting its ability to modulate TLR-4 signaling.

Conclusion

These findings highlight the therapeutic potential of phytocompounds, particularly compound 7, as potent anti-inflammatory modulators. Further research is warranted to validate their anti-inflammatory and neuroprotective effects in pre-clinical models, paving the way for their development as novel therapeutic agents for inflammatory diseases.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099309926241007055607
2024-10-16
2025-06-20
Loading full text...

Full text loading...

References

  1. MedzhitovR. Origin and physiological roles of inflammation.Nature200845472034283510.1038/nature07201
    [Google Scholar]
  2. GretenF.R. GrivennikovS.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences.Immunity2019511274110.1016/j.immuni.2019.06.02531315034
    [Google Scholar]
  3. ArnoldN. LechnerK. WaldeyerC. ShapiroM.D. KoenigW. Inflammation and Cardiovascular Disease: The Future.Eur. Cardiol.202116e2010.15420/ecr.2020.5034093741
    [Google Scholar]
  4. DuanL. RaoX. SigdelK.R. Regulation of inflammation in autoimmune disease.J. Immunol. Res.201920191210.1155/2019/740379630944837
    [Google Scholar]
  5. ChenL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget20189672047218
    [Google Scholar]
  6. PantM. DanS. PantS. RajA. UpadhyayS. K. Progression in Alzheimer’s Disease Correlates With Epigenetics and Cerebral Formaldehyde: From Potential Hereditary Mechanism and Environmental Factors to Therapeutic Measures.Curr Pharmacol Rep2021718720510.1007/s40495‑021‑00265‑6
    [Google Scholar]
  7. WangS. SongR. WangZ. JingZ. WangS. MaJ. S100A8/A9 in Inflammation.Front. Immunol.20189JUN129810.3389/fimmu.2018.0129829942307
    [Google Scholar]
  8. KwonH. S. KohS. H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes.Transl Neurodegener202094210.1186/s40035‑020‑00221‑2
    [Google Scholar]
  9. SchellerJ. ChalarisA. Schmidt-ArrasD. Rose-JohnS. The pro- and anti-inflammatory properties of the cytokine interleukin-6.Biochim. Biophys. Acta Mol. Cell Res.20111813587888810.1016/j.bbamcr.2011.01.03421296109
    [Google Scholar]
  10. RenK. TorresR. Role of interleukin-1β during pain and inflammation.Brain Res. Brain Res. Rev.2009601576410.1016/j.brainresrev.2008.12.02019166877
    [Google Scholar]
  11. UciechowskiP. DempkeW.C.M. Interleukin-6: A Masterplayer in the Cytokine Network.Oncology202098313113710.1159/00050509931958792
    [Google Scholar]
  12. JangD. LeeA.H. ShinH.Y. SongH.R. ParkJ.H. KangT.B. LeeS.R. YangS.H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics.Int. J. Mol. Sci.2021225271910.3390/ijms2205271933800290
    [Google Scholar]
  13. KhanA. KhanS.U. KhanA. ShalB. RehmanS.U. RehmanS.U. HtarT.T. KhanS. AnwarS. AlafnanA. RengasamyK.R.R. Anti-Inflammatory and Anti-Rheumatic Potential of Selective Plant Compounds by Targeting TLR-4/AP-1 Signaling: A Comprehensive Molecular Docking and Simulation Approaches.Molecules20222713431910.3390/molecules2713431935807562
    [Google Scholar]
  14. ZhangW. XiaoD. MaoQ. XiaH. Role of neuroinflammation in neurodegeneration development.Signal Transduct Target Ther.20238126710.1038/s41392‑023‑01486‑5
    [Google Scholar]
  15. LokhandeK.B. TiwariA. GaikwadS. KoreS. NawaniN. WaniM. SwamyK.V. PawarS.V. Computational docking investigation of phytocompounds from bergamot essential oil against Serratia marcescens protease and FabI: Alternative pharmacological strategy.Comput. Biol. Chem.202310410782910.1016/j.compbiolchem.2023.10782936842391
    [Google Scholar]
  16. Ahmad KhanM.S. AhmadI. Herbal Medicine.New Look to Phytomedicine: Advancements in Herbal Products as Novel Drug Leads2019Jan31310.1016/B978‑0‑12‑814619‑4.00001‑X
    [Google Scholar]
  17. LiF.S. WengJ.K. Demystifying traditional herbal medicine with modern approach.Nat. Plants2017381710910.1038/nplants.2017.10928758992
    [Google Scholar]
  18. PrasathkumarM. AnishaS. DhrisyaC. BeckyR. SadhasivamS. Therapeutic and pharmacological efficacy of selective Indian medicinal plants – A review.Phytomedicine Plus20211210002910.1016/j.phyplu.2021.100029
    [Google Scholar]
  19. TasneemS. LiuB. LiB. ChoudharyM.I. WangW. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents.Pharmacol. Res.201913912614010.1016/j.phrs.2018.11.00130395947
    [Google Scholar]
  20. DasK. Herbal plants as immunity modulators against COVID-19: A primary preventive measure during home quarantine.J. Herb. Med.20223210050110.1016/j.hermed.2021.10050134377631
    [Google Scholar]
  21. ParhamS. KharaziA.Z. Bakhsheshi-RadH.R. NurH. IsmailA.F. SharifS. RamaKrishnaS. BertoF. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials.Antioxidants2020912130910.3390/antiox912130933371338
    [Google Scholar]
  22. SelimS. Al JaouniS. Anticancer and apoptotic effects on cell proliferation of diosgenin isolated from Costus speciosus (Koen.) Sm.BMC Complement. Altern. Med.201515130110.1186/s12906‑015‑0836‑826329920
    [Google Scholar]
  23. Sabitha RaniA. SulakshanaG. PatnaikS. Costus speciosus, An antidiabetic plant-review.FS J Pharm Res2012152
    [Google Scholar]
  24. SarafA. Phytochemical and Antimicrobial Studies of Medicinal Plant Costus Speciosus (Koen.).J. Chem.2010760573510.1155/2010/605735
    [Google Scholar]
  25. NeheteJ. BhatiaM. NarkhedeM. In-vitro Evaluation of Antioxidant Activity and Phenolic Content of Costus speciosus (Koen) J.E. Sm.Iran. J. Pharm. Res.20109327127724363737
    [Google Scholar]
  26. MahendranathanC. AbhayarathneA. LkC. A. Efficacy of different solvent extracts from the aerial parts of Costus speciosus (Koen.) for the potential antibacterial activity against selected human pathogenic bacteria.202110.47119/IJRP100781620211977
    [Google Scholar]
  27. KalaC. AliS. S. AbidM. SharmaU. S. KhanN. A. Evaluation of in-vivo antiarthritic potential of methanolic extract of Costus speciosus rhizome.JAPS20155810.7324/JAPS.2015.50808
    [Google Scholar]
  28. AlSaadiB.H. AlHarbiS.H. IbrahimS.R.M. El-KholyA.A. El-AgamyD.S. MohamedG.A. Hepatoprotective activity of Costus speciosus (KOEN. EX. RETZ.) against paracetamol-induced liver injury in mice.Afr. J. Tradit. Complement. Altern. Med.2018152354110.21010/ajtcamv15i2.5
    [Google Scholar]
  29. BavarvaJ.H. NarasimhacharyaA.V.R.L. Antihyperglycemic and hypolipidemic effects of Costus speciosus in alloxan induced diabetic rats.Phytother. Res.200822562062610.1002/ptr.230218444247
    [Google Scholar]
  30. SohrabS. MishraP. MishraS.K. Phytochemical competence and pharmacological perspectives of an endangered boon—Costus speciosus (Koen.) Sm.: A comprehensive review.Bull. Natl. Res. Cent.202145120910.1186/s42269‑021‑00663‑2
    [Google Scholar]
  31. GheraibiaS. BelattarN. Abdel-WahhabM.A. HPLC analysis, antioxidant and cytotoxic activity of different extracts of Costus speciosus against HePG-2 cell lines.S. Afr. J. Bot.202013122222810.1016/j.sajb.2020.02.019
    [Google Scholar]
  32. WaisundaraV.Y. WatawanaM.I. JayawardenaN. Costus speciosus and Coccinia grandis : Traditional medicinal remedies for diabetes.S. Afr. J. Bot.2015981510.1016/j.sajb.2015.01.012
    [Google Scholar]
  33. MajiP. Ghosh DharD. MisraP. DharP. Costus speciosus (Koen ex. Retz.) Sm.: Current status and future industrial prospects.Ind. Crops Prod.202015211257110.1016/j.indcrop.2020.112571
    [Google Scholar]
  34. Al-AttasA.A.M. El-ShaerN.S. MohamedG.A. IbrahimS.R.M. EsmatA. Anti-inflammatory sesquiterpenes from Costus speciosus rhizomes.J. Ethnopharmacol.201517636537410.1016/j.jep.2015.11.02626593213
    [Google Scholar]
  35. KimJ.K. ParkS.U. An update on the biological and pharmacological activities of diosgenin.EXCLI J.201817242810.17179/EXCLI2017‑89429383016
    [Google Scholar]
  36. InoueK. EbizukaY. Purification and characterization of furostanol glycoside 26‐ Oβ ‐glucosidase from Costus speciosus rhizomes.FEBS Lett.1996378215716010.1016/0014‑5793(95)01447‑08549824
    [Google Scholar]
  37. SrivastavaS. SinghP. Costus speciosus (Keukand): A review.Der Pharmacia Sinica201121118128
    [Google Scholar]
  38. ShalB. DingW. AliH. KimY.S. KhanS. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease.Front. Pharmacol.20189MAY54810.3389/fphar.2018.0054829896105
    [Google Scholar]
  39. Calvo-RodriguezM. García-RodríguezC. VillalobosC. NúñezL. Role of Toll Like Receptor 4 in Alzheimer’s Disease.Front. Immunol.202011158810.3389/fimmu.2020.0158832983082
    [Google Scholar]
  40. CiesielskaA. MatyjekM. KwiatkowskaK. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling.Cell. Mol. Life Sci.20217841233126110.1007/s00018‑020‑03656‑y33057840
    [Google Scholar]
  41. TakeuchiO. AkiraS. Pattern recognition receptors and inflammation.Cell2010140680582010.1016/j.cell.2010.01.02220303872
    [Google Scholar]
  42. PłóciennikowskaA. Hromada-JudyckaA. BorzęckaK. KwiatkowskaK. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling.Cell. Mol. Life Sci.201572355758110.1007/s00018‑014‑1762‑525332099
    [Google Scholar]
  43. PrymasK. ŚwiątkowskaA. TraczykG. ZiemlińskaE. DziewulskaA. CiesielskaA. KwiatkowskaK. Sphingomyelin synthase activity affects TRIF-dependent signaling of Toll-like receptor 4 in cells stimulated with lipopolysaccharide.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20201865215854910.1016/j.bbalip.2019.15854931678513
    [Google Scholar]
  44. El-ZayatS.R. SibaiiH. MannaaF.A. Toll-like receptors activation, signaling, and targeting: an overview.Bull. Natl. Res. Cent.201943118710.1186/s42269‑019‑0227‑2
    [Google Scholar]
  45. WeiJ. ZhangY. LiH. WangF. YaoS. Toll-like receptor 4: A potential therapeutic target for multiple human diseases.Biomed. Pharmacother.202316611533810.1016/j.biopha.2023.11533837595428
    [Google Scholar]
  46. ZussoM. LunardiV. FranceschiniD. PagettaA. LoR. StifaniS. FrigoA.C. GiustiP. MoroS. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway.J. Neuroinflammation201916114810.1186/s12974‑019‑1538‑931319868
    [Google Scholar]
  47. GoreckiA. M. AnyaegbuC. C. AndertonR. S. TLR2 and TLR4 in Parkinson's disease pathogenesis: the environment takes a toll on the gut.Transl Neurodegener.20211014710.1186/s40035‑021‑00271‑0
    [Google Scholar]
  48. KrishnanM. ChoiJ. JangA. ChoiS. YeonJ. JangM. LeeY. SonK. ShinS.Y. JeongM.S. KimY. Molecular mechanism underlying the TLR4 antagonistic and antiseptic activities of papiliocin, an insect innate immune response molecule.Proc. Natl. Acad. Sci. USA202211910e211566911910.1073/pnas.211566911935238667
    [Google Scholar]
  49. DheenT. BabyN. PitchaiD. IndraswariF. LingE.A. LuJ. DheenT. Costunolide inhibits proinflammatory cytokines and iNOS in activated murine BV2 microglia.Front. Biosci. (Elite Ed.)2011E331079109110.2741/e31221622115
    [Google Scholar]
  50. GárateI. Garcia-BuenoB. MadrigalJ.L.M. CasoJ.R. AlouL. Gomez-LusM.L. MicóJ.A. LezaJ.C. Stress-induced neuroinflammation: role of the Toll-like receptor-4 pathway.Biol. Psychiatry2013731324310.1016/j.biopsych.2012.07.00522906518
    [Google Scholar]
  51. de BonoB. Toll Like Receptor 4 (TLR4) Cascade.200810.3180/REACT_6894.8
    [Google Scholar]
  52. ElizaJ. DaisyP. IgnacimuthuS. DuraipandiyanV. Antidiabetic and antilipidemic effect of eremanthin from Costus speciosus (Koen.)Sm., in STZ-induced diabetic rats.Chem. Biol. Interact.20091821677210.1016/j.cbi.2009.08.01219695236
    [Google Scholar]
  53. PerkinElmer, Clarus 600/560 D Gas Chromatograph/Mass Spectrometer (GC/MS).2007
    [Google Scholar]
  54. AnandD. Phytochemical analysis of Ficus arnottiana (Miq.) Miq. leaf extract using GC-MS analysis.International Journal of Pharmacognosy and Phytochemical Research20179671210.25258/phyto.v9i6.8177
    [Google Scholar]
  55. Madhavi SastryG. AdzhigireyM. DayT. AnnabhimojuR. ShermanW. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments.J. Comput. Aided Mol. Des.201327322123410.1007/s10822‑013‑9644‑823579614
    [Google Scholar]
  56. RoosK. WuC. DammW. ReboulM. StevensonJ.M. LuC. DahlgrenM.K. MondalS. ChenW. WangL. AbelR. FriesnerR.A. HarderE.D. OPLS3e: Extending force field coverage for drug-like small molecules.J. Chem. Theory Comput.20191531863187410.1021/acs.jctc.8b0102630768902
    [Google Scholar]
  57. HarderE. DammW. MapleJ. WuC. ReboulM. XiangJ.Y. WangL. LupyanD. DahlgrenM.K. KnightJ.L. KausJ.W. CeruttiD.S. KrilovG. JorgensenW.L. AbelR. FriesnerR.A. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins.J. Chem. Theory Comput.201612128129610.1021/acs.jctc.5b0086426584231
    [Google Scholar]
  58. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac95636305812
    [Google Scholar]
  59. ShelleyJ.C. CholletiA. FryeL.L. GreenwoodJ.R. TimlinM.R. UchimayaM. Epik: a software program for pK a prediction and protonation state generation for drug-like molecules.J. Comput. Aided Mol. Des.2007211268169110.1007/s10822‑007‑9133‑z17899391
    [Google Scholar]
  60. GreenwoodJ.R. CalkinsD. SullivanA.P. ShelleyJ.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution.J. Comput. Aided Mol. Des.2010246-759160410.1007/s10822‑010‑9349‑120354892
    [Google Scholar]
  61. LuC. WuC. GhoreishiD. ChenW. WangL. DammW. RossG.A. DahlgrenM.K. RussellE. Von BargenC.D. AbelR. FriesnerR.A. HarderE.D. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space.J. Chem. Theory Comput.20211774291430010.1021/acs.jctc.1c0030234096718
    [Google Scholar]
  62. LipinskiC. A. LombardoF. DominyB. W. FeeneyP. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Advanced Drug Delivery Reviews20126441710.1016/j.addr.2012.09.019
    [Google Scholar]
  63. IoakimidisL. ThoukydidisL. MirzaA. NaeemS. ReynissonJ. Benchmarking the Reliability of QikProp. Correlation between Experimental and Predicted Values.QSAR Comb. Sci.200827444545610.1002/qsar.200730051
    [Google Scholar]
  64. BowersK.J. Scalable algorithms for molecular dynamics simulations on commodity clustersProceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06200610.1109/SC.2006.54
    [Google Scholar]
  65. HalgrenT.A. MurphyR.B. FriesnerR.A. BeardH.S. FryeL.L. PollardW.T. BanksJ.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening.J. Med. Chem.20044771750175910.1021/jm030644s15027866
    [Google Scholar]
  66. VassM. TarcsayÁ. KeserűG.M. Multiple ligand docking by Glide: implications for virtual second-site screening.J. Comput. Aided Mol. Des.201226782183410.1007/s10822‑012‑9578‑622639078
    [Google Scholar]
  67. FriesnerR.A. MurphyR.B. RepaskyM.P. FryeL.L. GreenwoodJ.R. HalgrenT.A. SanschagrinP.C. MainzD.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes.J. Med. Chem.200649216177619610.1021/jm051256o17034125
    [Google Scholar]
  68. ShivakumarD. WilliamsJ. WuY. DammW. ShelleyJ. ShermanW. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the opls force field.J. Chem. Theory Comput.2010651509151910.1021/ct900587b26615687
    [Google Scholar]
  69. KurkiM. PosoA. BartosP. MiettinenM.S. Structure of POPC Lipid Bilayers in OPLS3e Force Field.J. Chem. Inf. Model.202262246462647410.1021/acs.jcim.2c0039536044537
    [Google Scholar]
  70. IkeguchiM. Partial rigid‐body dynamics in NPT, NPAT and NPγT ensembles for proteins and membranes.J. Comput. Chem.200425452954110.1002/jcc.1040214735571
    [Google Scholar]
  71. KawataM. NagashimaU. Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity.Chem. Phys. Lett.20013401-216517210.1016/S0009‑2614(01)00393‑1
    [Google Scholar]
  72. MartynaG.J. TobiasD.J. KleinM.L. Constant pressure molecular dynamics algorithms.J. Chem. Phys.199410154177418910.1063/1.467468
    [Google Scholar]
  73. MartynaG.J. KleinM.L. TuckermanM. Nosé–Hoover chains: The canonical ensemble via continuous dynamics.J. Chem. Phys.19929742635264310.1063/1.463940
    [Google Scholar]
  74. TuckermanM. BerneB.J. MartynaG.J. Reversible multiple time scale molecular dynamics.J. Chem. Phys.19929731990200110.1063/1.463137
    [Google Scholar]
/content/journals/cad/10.2174/0115734099309926241007055607
Loading
/content/journals/cad/10.2174/0115734099309926241007055607
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test